
PHYSICAL REVIEW E 93, 033002 (2016)

Blending stiffness and strength disorder can stabilize fracture
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Quasibrittle behavior, where macroscopic failure is preceded by stable damaging and intensive cracking
activity, is a desired feature of materials because it makes fracture predictable. Based on a fiber-bundle model
with global load sharing we show that blending strength and stiffness disorder of material elements leads to the
stabilization of fracture, i.e., samples that are brittle when one source of disorder is present become quasibrittle
as a consequence of blending. We derive a condition of quasibrittle behavior in terms of the joint distribution
of the two sources of disorder. Breaking bursts have a power-law size distribution of exponent 5/2 without any
crossover to a lower exponent when the amount of disorder is gradually decreased. The results have practical
relevance for the design of materials to increase the safety of constructions.
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I. INTRODUCTION

Disorder is an inherent property of practically all materials,
both natural and manmade. The heterogeneity occurring on
different length scales plays a crucial role in the mechanical
response and fracture behavior of materials. On the one hand,
the presence of flaws, voids, and grain boundaries reduces the
fracture strength, on the other hand, however, they improve
the damage tolerance of materials, which has a high practical
importance for construction components [1–3]. Low disorder
leads to brittle behavior where fracture occurs at a critical
load in a catastrophic manner without any precursors. From a
practical point of view quasibrittle behavior is desired, which
is typical for materials with a higher amount of disorder. The
fracture process of quasibrittle materials is composed of a
large number of intermittent steps of cracking giving rise to
the emergence of crackling noise [4,5]. Analyzing the statistics
and dynamics of crackling noise, methods can be worked out
to forecast the imminent global failure [6]. Controlling the
amount of disorder to enhance the quasi-brittle behavior of
materials has a high practical relevance.

The theoretical investigation of the fracture of hetero-
geneous materials is mainly based on discrete stochastic
models such as fiber bundle (FBM) [7–10], fuse model
[11], and discrete element (DEM) approaches [12–14] with
Monte Carlo and molecular dynamics simulation techniques.
A common basic assumption of such modeling approaches is
that the heterogeneity of materials can be fully captured by
introducing disorder for the local fracture strength of cohesive
elements of the model. However, recent experimental and
theoretical investigations led to the surprising conclusion that
the heterogeneity of the local stiffness can improve the fracture
toughness of materials [15,16].

Beyond artificially made (tailored) materials, structural
heterogeneity of local stiffness is an important feature of
biological materials as well [17–20]. One of the most known
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examples of such biological composite materials is nacre,
which exhibits extraordinary mechanical properties compared
to its constituent materials. These features can be partly
attributed to the interplay of the local variation of stiffness
and strength [17,18].

In the present paper we consider this problem in the
framework of fiber bundle models (FBM) by introducing two
sources of disorder, i.e., both the stiffness and strength of
fibers are random variables. Assuming global load sharing
after failure events we obtain a generic analytical description
of the mechanical response of the system on the macrolevel
and investigate the microscopic process of failure by computer
simulations. We show that blending stiffness and strength
disorder results in stabilization of fracture even if the system
with a single source of disorder had a perfectly brittle response.

II. FIBER BUNDLE WITH TWO RANDOM FIELDS

In the model we consider a parallel set of N fibers, which is
loaded along the fibers’ direction. Fibers have a perfectly brittle
response; i.e., they exhibit a linearly elastic behavior with a
Young modulus E and fail when the load σ on them exceeds
a threshold value σth. In order to capture the local variation of
stiffness and strength of materials, it is a crucial element of the
model that each fiber is characterized by two random variables:
the Young modulus of fibers E takes values in the interval
E− � E � E+ according to the probability distribution f (E),
while the breaking threshold σth is sampled with the probability
density g(σth) over the interval σ− � σth � σ+. In the present
study the two random fields are assumed to be independent,
i.e., no correlation is considered between strength and stiffness.
Hence, in a finite bundle of N fibers two independent random
values σ i

th and Ei are assigned to each fiber i = 1, . . . ,N .
When fibers fail during the stress-controlled loading of the
bundle the load of broken fibers has to be overtaken by the
remaining intact ones. For simplicity, we assume infinite range
of load sharing, which can be ensured by loading the bundle
between two perfectly rigid platens. It has the consequence
that the strain ε of fibers is always the same, however, due to
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the randomness of the Young modulus E their local load σi is
a fluctuating quantity σi = Eiε, where i = 1, . . . ,N .

In the classical FBM [9,10,21] the strength of fibers σth is
the only random variable that represents the heterogeneity of
materials. Since the Young modulus is constant E = const.,
in the limit of global load sharing of the model fibers
keep the same load Eε, and hence, break in the increasing
order of their breaking threshold σ i

th,i = 1, . . . ,N . It has the
consequence that the macroscopic constitutive equation σ0(ε)
can be expressed in terms of the cumulative distribution of
strength thresholds G(σth) = ∫ σth

σ−
g(x)dx in the form

σ0(ε) = Eε[1 − G(Eε)]. (1)

Here the term [1 − G(Eε)] provides the fraction of intact fibers
at the strain ε, and σ0 denotes the external load.

In the opposite limit of the model all fibers have the
same breaking threshold σth = const.; however, their Young
modulus E is random with Ei,i = 1, . . . ,N values. The
breaking condition Eiε > σth implies that in this case fibers
break in the decreasing order of their Young moduli Ei .
Recently, we have shown that in this case the constitutive
equation of the model can be obtained as [22]

σ0(ε) = ε

∫ σth/ε

E−
Ef (E)dE, (2)

where f (E) is the probability density of the Young modulus
of fibers. Equation (2) expresses that at a given strain ε those
fibers are intact in the bundle whose stiffness E falls below
σth/ε.

Our present fiber bundle model is a combination of the
above two cases allowing for randomness both in the stiffness
E and strength σth of fibers. In the presence of two disorder
fields E and σth the breaking sequence becomes more complex:
Fibers break when the load on them Eiε exceeds the local
breaking threshold Eiε > σ i

th, hence, at a strain ε those fibers
are broken for which the condition ε > σ i

th/Ei holds. It can
be seen that the breaking sequence of fibers is controlled
by the ratio of their strength and stiffness, which defines
their critical strain of breaking εi

th = σ i
th/Ei , and hence, the

breaking condition can be formulated as ε > εi
th. It follows

that in our model of random stiffness and strength with global
load sharing fibers break in the increasing order of the local
failure strain εi

th (i = 1, . . . ,N).
Since the stiffness and the failure strength are independent

random variables, the load carried by the intact fibers having
Young modulus and strength in the interval [E,E + dE] and
[σth,σth + dσth], respectively, reads as Eεf (E)g(σth)dEdσth.
Integrating the contributions of all intact fibers we obtain the
generic form of the constitutive equation

σ0(ε) = ε

∫ σ+

σ−

∫ σth/ε

E−
Ef (E)g(σth)dEdσth, (3)

in terms of the probability density functions f and g of the
Young modulus and strength of fibers, respectively. First, the
integral over E has to be performed, where the upper limit
σth/ε of the integral captures the effect that at the macroscopic
strain ε only those fibers can be intact which have a Young
modulus below σth/ε [similarly to Eq. (2)]. Then the integral

over the strength σth of single fibers follows, where σth can
take any value in the range σ− � σth � σ+.

It can be observed that taking the small strain limit ε → 0
in the constitutive equation, Eq. (3), we restore linear behavior
in the form σ0(ε → 0) = ε〈E〉, where 〈E〉 denotes the average
Young modulus of fibers 〈E〉 = ∫ E+

E−
Ef (E)dE. In the large

strain limit the macroscopic stress goes to zero σ0(ε → ∞) →
0 since there are no intact fibers left. It is important to note
that setting the probability distribution of the Young modulus
or breaking threshold to a Dirac δ function f (E) = δ(E − E0)
and g(σth) = δ(σth − σ 0

th), the constitutive equation Eq. (3) of
our model recovers the FBM equations, Eqs. (1) and (2), with
only one source of disorder for failure strength [9,10,21] and
for the Young modulus [22], respectively.

In the following we investigate the breaking process of our
FBM both on the macro and micro scales. In order to clarify the
effect of blending strength and stiffness disorder we focus on
systems that exhibit perfectly brittle failure if only one source
of disorder is present.

III. UNIFORMLY DISTRIBUTED STIFFNESS
AND STRENGTH

The details of the macroscopic response of the system and
of the breaking process of fibers can easily be determined
analytically when both the Young modulus E and the strength
σth of fibers are uniformly distributed with the probability
densities

f (E) = 1

E+ − E−
and g(σth) = 1

σ+ − σ−
. (4)

For brevity, we define the notation B ≡ f (E)g(σth) =
1/[(E+ − E−)(σ+ − σ−)], and the strains where the first and

th

EE- E+

-
+

Intact fibers

FIG. 1. Failure plane of fibers for uniformly distributed threshold
values. Each point with parameter values (E,σth) inside the rectangle
of side lengths E+ − E− and σ+ − σ− represents a fiber of the bundle.
The equation of the dashed straight line is σth = Eε so that fibers
above the line fullfill the condition σth > Eε. At a given strain ε

during the loading process those fibers are intact (highlighted with
gray color) and keep the external load, which fall above this line of
slope ε. The integral in Eq. (3) has to be performed over the domain
of intact fibers.
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last fibers break are denoted by εmin ≡ σ−/E+,εmax ≡ σ+/E−,
respectively. In addition, we introduce ε1 ≡ σ−/E−, ε2 ≡
σ+/E+ and point out that ε1 can be smaller or larger than ε2

depending on the parameters of the density functions Eq. (4).

A. Macroscopic response

The macroscopic constitutive curve σ0(ε) of the bundle
can be obtained by inserting the above probability densities

Eq. (4) into the generic form Eq. (3). Figure 1 illustrates the
failure plane (σth,E), where the breaking thresholds εth of
fibers can take values. When the strain ε is reached during the
loading process those fibers remain intact and keep the load
which fall above the straight line of slope ε (it is highlighted
with gray color in the figure).

Assuming the case ε1 < ε2 the integrals of
Eq. (3) can be carried out in a piecewise manner
as

σ0(ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5(E+ + E−)ε, ε < εmin;

1
6B

[ − 2E3
+ε2 − σ 3

−
ε

+ 3(E2
+σ+ + E2

−σ− − E2
−σ+)ε

]
, εmin < ε < ε1;

1
6B

[ − 2(E3
+ − E3

−)ε2 + 3σ+(E2
+ − E2

−)ε
]
, ε1 < ε < ε2;

1
6B

[
2E3

−ε2 − 3σ+E2
−ε + σ 3

+
ε

]
, ε2 < ε < εmax;

0, εmax < ε.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (5)

If ε2 < ε1, the macroscopic behavior is the same except for
the interval ε1 < ε < ε2 [the third interval of Eq. (5)], which
is replaced by

σ0(ε) = 1

6B

[
− 2(σ 3

+ − σ 3
−)

1

ε
− 3(σ+ − σ−)E2

−ε

]
. (6)

In this case we must also exchange ε1 and ε2 everywhere
in the limits of the intervals. In order to quantify the amount
of disorder in the system, without loss of generality, from here
on end we fix the upper limits E+ = 1 and σ+ = 1 and control
the disorder by the width of the distributions WE and Wσ such
that WE ≡ E+ − E− and Wσ ≡ σ+ − σ−. The macroscopic
response σ0(ε) of the fiber bundle is presented in Fig. 2 for
several values of Wσ keeping the width WE = 0.5 fixed. It
can be observed that for strains ε < εmin, where no fiber

0.0

0.25

0.5

0.75

0

0.0 0.5 1.0 1.5 2.0

WE=0.5 W =0.1

W =0.67

W =0.9

FIG. 2. Macroscopic response of a system where both sources of
disorder are uniformly distributed with the parameter WE = 0.5 for
three different values of Wσ . Different symbols and colors are used to
highlight the regimes corresponding to different terms of the integral
expression Eq. (5): bold line (red), circle (blue), square (green), and
triangle (magenta) stand for the contributions of the first, second,
third, and fourth terms of Eq. (5).

breaking occurs, the system exhibits a perfectly linear response
with an effective Young modulus equal to the average value
〈E〉 = (E+ + E−)/2 of E. Above εmin nonlinearity emerges as
the consequence of gradual breaking of fibers indicating the
quasibrittle behavior of the bundle. Note that the decreasing
regime of the constitutive curves in Fig. 2 can only be realized
under strain controlled loading conditions. Subjecting the
system to an increasing external load catastrophic collapse
occurs when the peak of σ0(ε) is surpassed. The value σ c

0
of the peak stress defines the fracture strength of the bundle,
while the peak position εc provides the critical strain. It can
be observed in Fig. 2 that the extension of the non-linear
regime preceding macroscopic failure, and hence, the degree
of brittleness, strongly depends on the amount of disorder.

B. Fraction of broken fibers

In order to quantify the degree of brittleness of the system
we determined the fraction of fibers Pb which break before the
collapse at σ c

0 under stress controlled loading. Perfectly brittle
behavior is characterized by the value Pb = 0, since in this
case the breaking of the first fiber gives rise to catastrophic
failure of the system. Starting from the constitutive equation
Eq. (5) we can find the critical strain εc, and then Pb can be
obtained from the disorder distribution as

Pb = 1 −
∫ σ+

σ−

∫ σth/εc

E−
f (E)g(σth)dEdσth. (7)

It has been shown analytically in the classical fiber bundle
model, i.e., in the absence of stiffness disorder, that the
system has a perfectly brittle response for narrow distributions
Wσ � 0.5 of fibers’ strength [23,24]. Recently, we have
demonstrated that in the opposite limit when the uniformly
distributed random stiffness is the only source of disorder,
the macroscopic response of the bundle is perfectly brittle at
any value of WE [22]. We evaluated the integral of Eq. (7)
by numerical means varying the amount of disorder over the
entire range 0 � WE,Wσ � 1. It can be seen in Fig. 3 that Pb

obtains a finite value Pb > 0 everywhere in the WE-Wσ plane
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FIG. 3. The fraction of fibers Pb, which break before the peak of
the constitutive curve is reached during stress controlled loading of
the bundle. The surface of Pb(WE,Wσ ) was obtained by numerically
evaluating the analytical expression Eq. (7). Pb has a finite value
everywhere on the WE-Wσ plane except on the two axis.

except for the WE axis where Wσ = 0 holds, and in the range
Wσ � 1/2 on the Wσ axis where WE = 0 holds. The result has
the astonishing consequence that whenever there is disorder
present both in local strength and stiffness of material elements
the macroscopic response of the system is quasibrittle, i.e., a
finite fraction of fibers breaks before the catastrophic failure
of the bundle, so that the constitutive curve of the system σ0(ε)
is never perfectly linear up to the maximum.

For the case of WE = 0 the integral of Eq. (7) can be carried
out analytically, which yields for the breaking fraction,

Pb(WE = 0,Wσ ) =
{

0 Wσ < 0.5,

1 − 1
2Wσ

, 0.5 � Wσ � 1.

}
. (8)

This result shows that in the absence of stiffness disorder
WE = 0 a transition occurs at Wσ = 1/2 between a perfectly
brittle Pb = 0 and a quasibrittle behavior Pb > 0. The numer-
ical results demonstrate that for any finite amount of stiffness
disorder WE > 0 the transition disappears since always a finite
fraction of fibers breaks before failure Pb > 0. It follows
that blending stiffness and strength disorder can stabilize the
system in the sense that no catastrophic collapse can occur
without precursors.

IV. CONDITION OF STABILITY

In the previous section it has been shown using the
cumulative quantity Pb that mixing stiffness and strength
disorder results in stability of the system in the sense that
immediate catastrophic failure at the time of first breaking is
avoided. In the following we analyze the transition from the
perfectly brittle to quasibrittle behavior by focusing on the
microscopic dynamics of the failure process.

We can formulate a criterion for the stability of the fracture
process in terms of the disorder distributions based on the idea
that the system is perfectly brittle if the first fiber breaking
induces a catastrophic avalanche. At the breaking of the first
fiber with the threshold value εmin

th = σ−/E+ the load on the
bundle is 〈E〉εmin

th = 〈E〉σ−/E+. After the breaking event the
new Young modulus can be approximated as 〈E〉′ ≈ 〈E〉 −

E+/N , which gives rise to a higher strain ε′ of the bundle

ε′ = σ−
E+

[ 〈E〉
〈E〉 − E+/N

]
. (9)

Consequently, the strain increment �ε = ε′ − εmin
th generated

by the breaking event under a fixed load can be cast in the form

�ε = σ−
N〈E〉 . (10)

The average number of fiber breakings a(εmin
th ) induced by the

first failure reads as

a
(
εmin

th

) = Nh
(
εmin

th

)
�ε = h

(
σ−
E+

)
σ−
〈E〉 , (11)

where h(εth) denotes the probability distribution of threshold
strains εth. The avalanche induced by the first fiber breaking
becomes catastrophic if a(εmin

th ) > 1, which yields the stability
condition of our system

h

(
σ−
E+

)
σ−
〈E〉 < 1. (12)

Note that the condition is general and can be applied to any
disorder distribution.

If there is only stiffness disorder present (σ i
th = σth,i =

1, . . . ,N) the distribution h(εth) can be obtained from the
stiffness distribution f (E) with a simple transformation

h(εth) = f

(
σth

εth

)
σth

ε2
th

. (13)

Substituting, e.g., the uniform distribution Eq. (4) we obtain
the condition E+/(E+ − E−) < 1/

√
2, which can never hold.

It follows that if the stiffness disorder is the only source of
heterogeneity of the system, for uniformly distributed stiffness
values the system always has a perfectly brittle behavior. In
Ref. [22] the same result was obtained but in a different way
focusing on the shape of the constitutive curve.

When both the stiffness and strength of fibers have disorder
the probability distribution of the strain thresholds h(εth) can
be calculated as the convolution of f (E) and g(σth) taking the
ratio of the two random variables εth = σth/E,

h(εth) =
∫ E+

E−
Ef (E)g(εthE)dE. (14)

We carried out the integration for the specific case when both
random variables are uniformly distributed and ε1 < ε2 holds,

h(εth) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 εth <
σ−
E+

,

1
2B

[
E2

+ − σ 2
−

ε2
th

]
,

σ−
E+

� εth <
σ−
E−

,

1
2B

[
E2

+ − E2
−
]
,

σ−
E−

� εth <
σ+
E+

,

1
2B

[
σ 2

+
ε2

th
− E2

−

]
,

σ+
E+

� εth <
σ+
E−

,

0 εth >
σ+
E−

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (15)

Figure 4 illustrates the distribution h(εth) for three com-
binations of WE and Wσ . It can be observed that for
uniformly distributed stiffness and strength the distribution
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FIG. 4. Probability distribution h(εth) of the strain thresholds εth

of fibers calculated from Eq. (15) for three parameter sets.

of the strain thresholds h(εth) starts continuously from zero for
any finite value of σ− without any finite jump. This feature
explains why the combination of two perfectly brittle systems
leads to the emergence of quasibrittle behavior where stable
cracking precedes macroscopic failure. For the case σ− = 0
the distribution starts with a finite constant, however, the small
strain value ε 
 0 still ensures stability. For those disorder
distributions of stiffness and strength which cover the range
from 0 to +∞ stability of the blend is again guaranteed by the
generic form of the distribution Eq. (14).

V. AVALANCHES OF FIBER FAILURES

Under quasistatically increasing external load σ0 when a
fiber breaks its load gets redistributed over the remaining
intact fibers which may induce further failure events. As
a consequence of subsequent load redistribution a single
breaking fiber may trigger an entire avalanche of breaking
events. The randomness of local physical properties and the
interaction of fibers introduced by the load sharing result in
highly complex microscopic dynamics of the failure process
[9,25]. In the following we explore the statistics of breaking
avalanches of fibers by computer simulations.

A. Computer simulation technique

First we present the algorithm that allows us to simulate
the fracture process of large bundles. It has been assumed
that the bundle is loaded between stiff platens which ensures
that the strain of fibers is the same ε. As the external load σ0

is increased the fibers break in the increasing order of their
failure strain εi

th, determined as εi
th = σ i

th/E
i (i = 1, . . . ,N),

which fall in the range σ−/E+ � εth � σ+/E−. Computer
simulation of the failure process of a finite bundle of N

fibers under stress controlled loading proceeds in the following
steps:

(1) Generate random values of the Young modulus Ei ,
and failure strength σ i

th,i = 1, . . . ,N of fibers according to
the desired distributions f (E) and g(σth). Independence of the
random fields has to be ensured.

(2) Determine the failure strains εi
th = σ i

th/Ei,i =
1, . . . ,N , and sort them into ascending order.

(3) Increase the externally imposed strain ε up to the
smallest threshold ε = εmin

th , and remove the breaking fiber.
At this instant there is σ0 = 〈E〉ε load on the system, where
the initial value of the average Young modulus of the bundle
reads as

〈E〉 = 1

N

N∑
i=1

Ei. (16)

(4) After the breaking event the load of the broken fiber
gets redistributed over the remaining intact ones keeping the
external load σ0 constant. This load redistribution may induce
additional fiber failures and eventually can even trigger an
avalanche of breaking events. Note that due to the random
stiffness, fibers keep a different amount of load, which is why
long-range interaction is easier to realize through the control of
strain. Triggered breakings can be determined in the following
way: after the breaking event the overall Young modulus of
the bundle has to be updated,

〈E〉′ = 1

Nint

∑
i∈I

Ei, (17)

where I denotes the set of intact fibers, which has Nint

elements.
Since 〈E〉′ < 〈E〉 and the external load is kept constant, the
strain of the bundle increases to the new value ε′, which can
be obtained as

ε′ = 〈E〉ε/〈E〉′. (18)

(5) Those fibers that have threshold values below the the
updated strain ε

j

th < ε′ have to be removed and the algorithm
is continued with step 4. During bursts of breaking one has to
take into account in Eq. (17) that more than one fiber may also
break in an iteration step.

(6) If no more fibers break due to load redistribution, the
avalanche ended and the external strain can be increased again
to the strain threshold of the next intact fiber in the sorted
sequence of εth.

The efficiency of the algorithm enabled us to simulate
bundles of N = 107 fibers averaging over 5000 samples at
each parameter set with moderate CPU times.

B. Size distribution of bursts

Using the above algorithm we explored the bursting
activity accompanying the stress controlled loading process
of quasibrittle systems with two sources of disorder. The
avalanches are characterized by their size �, which is defined
as the number of fibers breaking in the correlated trail of the
avalanche. For the classical FBM, where the fiber strength is
the only source of disorder, it has been shown analytically
[9,10,25] and by computer simulations [9,26] that for equal
load sharing the size distribution of avalanches p(�) has a
power-law behavior,

p(�) ∼ �−τ . (19)

The value of the exponent τ = 5/2 is universal for a broad
class of failure threshold distributions [9,10,25]. Avalanches
occur until the disorder is high enough in the system Wσ >
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FIG. 5. Burst-size distributions p(�) for several values of
strength disorder Wσ in the absence of stiffness disorder WE = 0.
Approaching the brittle regime Wσ → 1/2 the well-known result of
the crossover in τ from 5/2 to 3/2 is recovered. The two straight lines
represent power laws with exponents 3/2 and 5/2. The inset presents
the constitutive behavior of the system for three values of Wσ .

σ+/2 [23,24]. In the limiting case Wσ → σ+/2, the quasibrittle
region where avalanche precursors occur shrinks such that
when Wσ � σ+/2 the response of the bundle becomes per-
fectly brittle and the system collapses without having any finite
size avalanches. The constitutive behavior of the system under
stress-controlled loading is shown in the inset of Fig. 5 for a few
values of Wσ , where the shrinking of the quasibrittle regime
can be observed. Approaching the brittle limit the power-law
size distribution of avalanches prevails, however, p(�) exhibits
a crossover to a lower exponent τ = 3/2 in agreement with
previous findings [9,23,24]. This behavior can be seen in Fig. 5,
where avalanche size distributions p(�) of our model are
presented for several values of Wσ at zero stiffness disorder
WE = 0. Approaching the brittle limit the lower value of the
avalanche-size exponent τ = 3/2 means that the fraction of
large-size events gets higher since the breaking of stronger
fibers can trigger more secondary breakings. Avalanches of
breaking fibers are analogous to acoustic outbreaks generated
by the nucleation and propagation of cracks in heterogeneous
solids under an increasing stress [27–29]. Recording the
acoustic waves that emanate from the material is an indicator
of the breaking phenomena on the microscopic level. It has
been addressed that the crossover in τ could be exploited to
forecast the imminent catastrophic failure [23,30].

In Sec. III A the analysis of the fraction of broken fibers Pb

at the peak load has already shown that adding a second source
of disorder to an otherwise brittle system, quasibrittle behavior
emerges; i.e., Pb is never zero when Wσ,WE > 0. It has the
interesting consequence that macroscopic failure is always
preceded by finite avalanches, which behave as precursors to
failure. To demonstrate this effect in Fig. 6(a), avalanche-size
distributions are presented for Wσ = 0.25, which should
provide perfectly brittle behavior (no stable avalanches) if
strength is the only source of disorder. Simulations revealed
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FIG. 6. (a) Size distribution of bursts for Wσ = 0.25 varying the
stiffness disorder WE in a broad range. (b) Scaling collapse of the
distributions of (a). Best collapse is achieved with the exponent α =
1/2. In (a) and (b) the same legend is used. (c) Size distribution of
bursts for WE = 1 varying the amount of strength disorder Wσ in a
broad range. (d) Scaling collapse of the distributions of (c) using the
exponent α = 1/2. In (c) and (d) the same legend is used.

that for any finite value of WE the size distribution p(�) has
a power-law behavior as in Eq. (19) followed by a stretched
exponential cutoff. For the value of the power-law exponent
the usual mean-field value τ = 5/2 was obtained. It can be
observed that the amount of disorder WE only controls the
total number of avalanches and the cutoff burst size of the
distributions. Figure 6(b) shows that rescaling the burst size
by the α = 1/2 power of WE all the distributions can be
collapsed on a master curve. This high-quality scaling collapse
demonstrates that the exponent τ is independent of the amount
disorder, even in the limit of very low WE the same exponent
τ = 5/2 is retained. Note that due to the normalization of the
distributions along the vertical axis scaling is done with the
product of the two exponents α and τ .

We have pointed out in Ref. [22] that when stiffness is
the only source of disorder Wσ = 0 perfectly brittle behavior
occurs for any value of WE . However, in the present study we
have shown that adding strength disorder leads to stabilization.
Avalanche-size distributions are presented in Fig. 6(c) for
WE = 1 varying the amount of strength disorder in a broad
range. Again the same functional form occurs as in Fig. 6(a)
with the same exponent τ = 5/2 for all the parameter sets. The
scaling collapse in Fig. 6(d) is also obtained with the exponent
α = 1/2 as for the case of varying stiffness disorder. The data
collapse analysis also implies that the cutoff burst size �c of
the distributions has a power law dependence on the amount
of disorder in the form �c ∼ Wα

E and �c ∼ Wα
σ when the

stiffness and strength disorder are varied, respectively, in the
limit of low disorder.

A very important consequence of the above numerical
analysis is that when approaching the brittle limit WE → 0
for Wσ < 1/2 and Wσ → 0 for WE > 0, the avalanche-size
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distributions do not show any crossover to a lower exponent.
Reducing the amount of disorder both the number and size of
avalanches decreases; however, the value of the power law
exponent τ remains robust. Crossover occurs when solely
strength disorder is present WE = 0.

Note that no similar scaling behavior can be observed when
only one source of disorder is present: For constant fiber
strength, the system has a perfectly brittle behavior at any
values of WE . When strength is the only source of disorder
the bundle becomes critical already when Wσ approaches
1/2. It has the consequence that in the limit Wσ → 1/2 the
characteristic avalanche size increases; i.e., just the opposite
happens to what we have presented above. When the two
disorders are blended the reason of the decreasing avalanche
activity is that for any WE and Wσ the threshold distribution
h(εth) starts from a zero value even if the thresholds have a
finite lower bound εmin

th > 0.

VI. DISCUSSION

The fracture of disordered materials proceeds in bursts that
can be recorded in the form of acoustic noise. Measuring
crackling noise is the primary source of information about the
microscopic dynamics and time evolution of fracture. From
laboratory experiments through engineering constructions to
the scale of natural catastrophes forecasting techniques of
imminent global failure strongly rely on identifying signa-
tures in the evolving temporal sequence of breaking bursts
[31,32]. When the disorder is absent or its amount is not
sufficiently high, failure occurs in a catastrophic manner
without any precursors. Hence, enhancing the quasibrittle
nature of fracture by controlling disorder is of high practical
importance.

In the present paper we considered this problem in the
framework of fiber bundle models. This approach provides a
simple representation of the disorder and allows for the in-
vestigation of the microscopic dynamics of the failure process
under various types of loading conditions. The classical setup
of FBMs assumes constant Young modulus of fibers so that the
heterogeneous microstructure is solely captured by the random
strength of fibers. Here we proposed an extension of FBMs
by considering simultaneously two sources of disorder, i.e.,
both the strength and stiffness of fibers are random variables
independent of each other. We carried out a detailed analytical
and numerical investigation of the fracture process of the
system under quasistatically increasing external load both on
the macro and micro scales.

For the case of global load sharing we showed that
introducing a second source of disorder stabilizes the system
in the sense that a bundle which has a perfectly brittle
behavior becomes quasibrittle whenever a finite amount of
disorder of the other field is added. We gave a general
analytical derivation of the constitutive equation and of the
stability criterion of the system in terms of the disorder
distributions. For the purpose of numerical investigations an
efficient simulation technique was worked out. As a specific
case we considered uniformly distributed strength and stiffness

of fibers controlling the amount of disorder by the width of the
distributions. Investigating the microscopic process of failure
we pointed out that the size of crackling bursts is power-law
distributed followed by an exponential cutoff. The power-law
exponent proved to be equal to the usual mean-field exponent
5/2 without having any crossover to a lower value when
approaching the limit of perfect brittleness. The amount of
disorder only controls the number of avalanches and their
cutoff size. The origin of the stabilization mechanism is that
the distribution of the relevant failure threshold, obtained as
the convolution of the stiffness and strength distributions of
fibers, starts from a zero value even if the thresholds have a
finite lower bound.

Recently, the problem of mixing strength and stiffness dis-
order has been considered in a simplified modeling framework:
in Ref. [33] a bundle was composed of a few groups of fibers
of different Young moduli having uniformly distributed failure
strength. Approximate calculations showed that increasing
the number of groups of equally spaced Young modulus
values the bundle retains the quasibrittle behavior for narrower
strength distributions. Our analytical results provide a general
understanding of the findings of Ref. [33] with the additional
outcome that the continuous stiffness distribution of our
study corresponds to an infinite number of groups of fibers
where stability is ensured for any finite amount of strength
disorder.

To test the generality of our results, we also considered
the case where the breaking threshold and Young modulus
of fibers follow a Weibull distribution with a lower cutoff
x−. Here x stands for both strength σth and stiffness E.
Simulations performed with several values of x− verified that
any finite amount of disorder leads to quasibrittle behavior
of the bundle when two sources of disorder are present.
Furthermore, the burst-size distribution exponent τ displayed a
crossover from 5/2 to 3/2 only when the strength disorder was
reduced in the absence of stiffness disorder in agreement with
Ref. [34].

Besides their theoretical importance our results have prac-
tical relevance for materials’ design, the controlled blending
of stiffness and strength disorder is a promising way to
increase the safety of constructions. Most of our results are
formulated in a general way so that they can be applied to
any strength and stiffness distributions used in engineering
and materials science. Biological materials exhibit a broader
variety of stiffness and strength than engineering materials,
which could also be captured in the framework of our model.
An important limitation of our study that has to be resolved is
the assumption that strength and stiffness of material elements
are uncorrelated. In real materials correlations naturally
develop such that higher stiffness may be accompanied by
higher strength. Work is in progress to capture these types of
correlation in our model.
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