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Kinetic Monte Carlo algorithm for thermally induced breakdown of fiber bundles
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Fiber bundle models are one of the most fundamental modeling approaches for the investigation of the fracture
of heterogeneous materials being able to capture a broad spectrum of damage mechanisms, loading conditions,
and types of load sharing. In the framework of the fiber bundle model we introduce a kinetic Monte Carlo
algorithm to investigate the thermally induced creep rupture of materials occurring under a constant external
load. We demonstrate that the method overcomes several limitations of previous techniques and provides an
efficient numerical framework at any load and temperature values. We show for both equal and localized load
sharing that the computational time does not depend on the temperature; it is solely determined by the external
load and the system size. In the limit of low load where the lifetime of the system diverges, the computational
time saturates to a constant value. The method takes into account the secondary failures induced by subsequent
load redistributions after breaking events, with the additional advantage that breaking avalanches always start
from a single broken fiber.
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I. INTRODUCTION

Under a constant external load most materials exhibit a
time-dependent response and fail in a finite time. Beyond its
high technological importance the understanding of such creep
rupture phenomena addresses several fundamental problems
for statistical physics as well. The complexity of creep rupture
arises from the fact that, depending on the type of materials,
it can have a wide variety of microscopic origins, from the
existence of frictional interfaces, through the viscoelasticity
of the constituents, to thermally activated aging processes
[1,2]. Recent experimental investigations have revealed the
high importance of thermally activated degradation in creep
phenomena [1,3–6], from the fracture of bundles of collagen
fibers in biomaterials [7] and complex fluids [8] through gels
[9] and solids [1,10], with consequences reaching even to
geological scales [4].

Most theoretical approaches to the fracture of heteroge-
neous materials are based on discrete models composed of
lattices of springs [11], beams [12], or fibers. Among the
modeling approaches the fiber bundle model (FBM) plays
a crucial role, since it captures the main ingredients of the
fracture of disordered materials but it is still simple enough
to facilitate analytical calculations in the mean-field limit
[13–21]. In FBMs the specimen is discretized in terms of
parallel fibers which are subject to a longitudinal external
load. The fibers have identical elastic properties but stochasti-
cally distributed breaking thresholds. Under a quasistatically
increasing external load first the weaker fibers break in the
bundle. The load of broken fibers must be overtaken by the
remaining intact ones, which in turn may also exceed their
respective failure threshold and fail. Hence, a single breaking
event may induce an entire avalanche, which goes on until it is
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arrested by some strong fibers or it destroys the entire system
[1,2,15,20–24].

During the past decades several extensions of FBMs have
been proposed to enable their application to the problem
of damage-enhanced creep in various types of materials
[1,2,20–27]. In order to obtain a theoretical understanding of
the effect of thermally induced damage accumulation on the
process of creep rupture, recently Guarino et al. introduced a
simple fiber bundle approach which has proven very successful
[5,28–30]. In the simplest case of the model a bundle of
homogeneous fibers is considered (i.e., all the fibers have the
same failure strength), which is then subject to a constant
sub-critical external load. The evolution of the system is driven
by thermal noise: the local stress on fibers has thermally
induced fluctuations which may lead to breaking. The main
advantage of this simple model is that several interesting
macroscopic features of the system can be derived analytically,
e.g., it has been demonstrated that the lifetime of the bundle
has an Arrhenius-type dependence on the load and temperature
even when the fibers have disordered strength [5,29,30].
However, on the microscopic level computer simulation is an
indispensable tool to obtain information about the stochastic
dynamics of thermally induced fracture. The direct computer
implementation of thermally induced stress fluctuations imply
serious limitations on the available range of temperature and
load values and on the system size.

In the present paper we propose a kinetic Monte Carlo
(KMC) algorithm which provides an efficient framework
to investigate the thermally induced creep rupture of fiber
bundles. We demonstrate that the KMC-FBM overcomes the
main limitations of previously used algorithms [21,31–33],
allowing for a better understanding of thermally induced
rupture processes. After presenting the algorithm we focus
on its efficient implementation and performance analysis. The
advantages of the KMC-FBM are illustrated by comparing the
load, temperature, and system size dependence of the CPU
time to those of the traditional method of direct Monte Carlo
(MC) sampling.
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II. FIBER BUNDLE WITH THERMAL NOISE

To study the time evolution of thermally activated fracture
processes, recently Guarino et al. introduced an extension
of the FBM which proved to be successful in spite of its
simplicity [5,5,21,28,30]. In the following we summarize the
main ingredients of the model construction and present the
direct computer implementation of the dynamics of the model.

A. Model construction

In the model we consider N0 parallel fibers on a square
lattice of size L. The fibers have a linearly elastic behavior
characterized by an identical Young modulus E. Structural
heterogeneity of the material can be captured by introducing
random strength σ i

th for fibers i = 1, . . . ,N0 with a probability
density pth(σth). The bundle is subject to a constant external
load σ parallel to the fibers’ direction such that the load falls
below the fracture strength σc of the sample. To take into
account the effect of thermal noise in the fracture process, it
is assumed that the local load on fibers σi, i = 1, . . . ,N0 has
time dependent fluctuations ξ (t) so that the load of fiber i at
time t reads as

σi = σ ∗
i + ξi(t), (1)

where σ ∗
i denotes the deterministic part of the load arising

from the external driving and from the load transferred from
broken fibers. Thermally induced stress fluctuations ξ are
characterized by a Gaussian distribution with zero mean and a
temperature dependent standard deviation

p(ξ,T ) = (1/
√

2πT ) exp(−ξ 2/2T ). (2)

The system evolves in discrete time steps sampling new values
of ξ independently of each other. The fibers break when the
local load on them exceeds their failure strength

σi > σ i
th. (3)

After such primary fiber breakings induced by thermal fluctu-
ations, the load of broken fibers has to be redistributed over
the remaining intact ones. Investigating fracture problems two
limiting cases of load redistribution have a high relevance: in
the case of equal load sharing (ELS) all surviving fibers over-
take equal fractions of the load [5,15,16,18,19,25,28,30,34].
ELS ensures that the stress distribution remains homogeneous
in the bundle until the end of time evolution, which makes
it possible to obtain the most important macroscopic charac-
teristic quantities of the system by analytical means. In the
case of localized load sharing (LLS) the load of a broken
fiber is equally distributed over its intact nearest neighbors
in the square lattice, resulting in a high stress concentration
along the perimeter of failed regions [21,32,33]. Most real
cases lie between these two limits, however, comparing ELS
and LLS results can reveal the effect of the inhomogeneous
stress field in the breaking process. It follows from the model
construction that the system has a finite lifetime tf even at
zero external load, i.e., thermal fluctuations always drive the
system to failure, however, tf depends strongly on the load
σ and temperature T : as the temperature goes to 0 at any
load or the load goes to the critical load of the bundle at any
finite temperature, the lifetime of the system tends to ∞ or 0,

respectively. Other parameter sets provide lifetimes between
these two limits.

In the simplest setup of the model a completely homoge-
neous system is considered, i.e., all the fibers have the same
breaking strength σth = 1 so that the only source of disorder
is the thermal noise arising due to the finite temperature T .
Under creep loading, analytic calculations in the mean-field
limit of the homogeneous model have revealed that the
macroscopic lifetime of the bundle has an Arrhenius-type
dependence on the external load σ and temperature T [5,28].
Later it was demonstrated that the presence of disorder in the
breaking thresholds σth increases the effective temperature of
the system, but the scaling form of the lifetime remains the
same [30,31,35]. For the time evolution of the system under a
constant load it was proven that thermally driven creep rupture
reproduces the Andrade relaxation at the beginning of the
process, i.e., the strain rate ε̇ of the bundle decreases as ε̇ ∼ t−p

with the exponent p = 1 [36]. Additionally, the time-to-failure
power-law acceleration of strain close to failure has also been
obtained analytically [36].

B. Computer simulation with direct sampling

Analytical calculations are mainly feasible on the macro-
scopic scale of the fracture process, however, serious limita-
tions arise when studying the microscopic dynamics of the
system. Under a constant subcritical load fibers primarily
break due to thermal fluctuations, which corresponds to the
nucleation of microcracks in the bundle. After the load of
broken fibers is redistributed there may be additional fibers,
the load on which exceeds the local breaking threshold.
As a consequence, the thermally induced breaking of fibers
can give rise to further breaking and, finally, can even
trigger an entire avalanche of secondary failure events. This
bursting activity represents the intermittent nucleation and
propagation of cracks, which is a crucial feature of the fracture
of heterogeneous materials. Under LLS, additionally to the
temporal correlation of bursting failure events, complex spatial
correlations arise in the bundle: fibers breaking in a burst form
a connected set in the square lattice, which can be considered
as cracks. Such breaking bursts generate acoustic waves in real
materials which can be recorded in the form of crackling noise
being the primary source of information about the microscopic
dynamics of the fracture process.

Simulation techniques of the Guarino model so far have
been based on the direct MC sampling of thermally induced
stress fluctuations [21,31–33]. An iteration step of the algo-
rithm at time t starts with generating random stress fluctuations
ξi(t) [i = 1, . . . ,N(t)] according to the distribution, Eq. (2),
for all intact fibers of number N (t) independent of each
other. Fibers for which the total load σi , Eq. (1), exceeds
the local breaking threshold σ i

th, Eq. (3), are immediately
removed from the system and the deterministic part of their
load is redistributed over the remaining intact fibers according
to the ELS or LLS schemes. Note that, at the same time,
more than one primary breaking can occur, especially at
high temperatures and loads. After the load redistribution the
breaking criterion, Eq. (3), is checked again until a stable
configuration is reached where all fibers can sustain the
elevated load. Time is represented by an integer t which is
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incremented as t → t + 1 after an avalanche stops. Based
on the algorithm, computer simulations revealed several
interesting aspects of the microscopic bursting activity and
spatial structure of damage of thermally activated breakdown:
both the size of avalanches and the waiting times between
consecutive events proved to be power law distributed, with
exponents depending on the load and temperature [21,32,33].
Studying the growth dynamics and spatial structure of cracks
as an interesting analogy of thermally induced failure to phase
transitions was pointed out, changing the type from first order
to continuous-like transition as T and σ are varied [32].
However, the algorithm has a very serious limitation, namely,
the CPU time it requires is practically proportional to the
lifetime of the bundle. It has the consequence that only a
relatively narrow region of the σ -T parameter plane could
have been explored numerically [21,31–33]. For example,
for the system size L = 256 the ranges of temperature T

and load σ available with a reasonable CPU time under
LLS conditions are 0.005 � T � 0.1 and 0.01 � σ/σc < 1,
respectively [21,32,33].

III. KINETIC MONTE CARLO ALGORITHM
FOR THERMALLY INDUCED CRACKING

In order to overcome the limitations of directly generating
the fluctuating stress field with Gaussian distributed noise we
start from the transition rate of fibers between the intact and
the broken states. Subjecting the bundle to a constant external
load σ the probability pb that fiber i with breaking threshold
σ i

th will break under the local load σi reads as

pi
b = 1 − P

(
σ i

th − σi,T
)
, (4)

where

P (x,T ) =
∫ x

−∞
(1/

√
2πT ) exp(−x2/2T ) (5)

is the cumulative distribution of thermal fluctuations with
the probability density function, Eq. (2). Since the thermally
induced breakings of fibers are independent of each other, the
primary breaking can be described as a Poissonian process
with the ensemble of transition rates

ri ∼ pi
b. (6)

Here index i runs over the intact fibers i = 1, . . . ,N (t) that are
present in the system at a given time with number N (t).

The KMC algorithm works as follows.
(1) Initialization

Time t is set to t = 0.
(2) Local transition rates of intact fibers

Calculate the transition rates ri according to Eq. (4) for all
intact fibers i = 1, . . . ,N(t).

(3) Cumulative transition rates
Update the array of cumulative transition rates,

Ri =
i∑

j=1

rj , i = 1, . . . ,N(t). (7)

Note that the total breaking rate of the bundle is RN(t), which
henceforth is denoted R for brevity.

(4) Primary fiber breaking
Choose one fiber to break randomly with a probability
proportional to its transition rate. For this purpose we generate
a random number κ uniformly distributed between 0 and 1 and
find that fiber i for which it holds that

Ri−1 � κR � Ri. (8)

(5) Breaking event
Remove fiber i from the list of intact fibers and update N (t) →
N (t) − 1.

(6) Time increment
We determine the time �t elapsed to the breaking of fiber
i since the last breaking event using the total breaking rate
R. For this purpose we generate a new uniformly distributed
random number κ ′ between 0 and 1 and obtain �t as

�t = − ln κ ′

R
, (9)

which is equivalent to assuming exponentially distributed
waiting times between consecutive events of rate R. Then
time t is updated as t → t + �t .

(7) Avalanche of triggered breakings
The load of the broken fiber has to be redistributed over the
intact ones according to the selected load-sharing scheme.
The updated load of fibers is compared to the local breaking
threshold and additional breaking is induced when σk >

σk
th. The removal of these fibers is again followed by load

redistribution, which in turn can trigger an entire avalanche
of breaking events which leads to an updated value of the
number of intact fibers N (t). The avalanche stops when either
all remaining intact fibers can sustain their local load or there
are no more intact fibers available for breaking (catastrophic
avalanche).

(8) Stopping condition
If there are still intact fibers in the bundle N (t) > 0, then return
to step 2; otherwise, finish.

The disorder of breaking thresholds is quenched so that
breaking rates ri of Eqs. (4) and (6) have to be updated in
step 2 solely due to the changing load of single fibers. It has
the consequence that the efficient implementation of the ELS
and LLS schemes requires different strategies. Under ELS
conditions all intact fibers keep the same load, which has two
important consequences: (i) the breaking rate of all intact fibers
has to be updated after each avalanche, and (ii) in a triggered
avalanche fibers break in the increasing order of their failure
thresholds. Hence, at the beginning of the simulation the fibers
are sorted in increasing order of the breaking threshold, which
has to be maintained over the course of the simulation. Under
LLS conditions the stress field is inhomogeneous, since the
load is locally redistributed over the intact nearest neighbors of
failed fibers, and large overloads build up along the perimeter
of clusters of broken fibers. However, fibers which do not
have broken neighbors only keep the external load σ , which
is constant. It follows that in LLS simulations only a subset
of fibers has to be updated, i.e., those which received load
increments during the last avalanche (and survived it). The
different updating schemes imply that LLS simulations can
be significantly faster than their ELS counterparts, contrary to
other FBMs [17–20].
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IV. TESTS OF EFFICIENCY

In order to test the efficiency of the KMC algorithm of
FBMs and verify its advantages over the usual direct sampling
approach, computer simulations were carried out on Intel Xeon
X5680 3.6-GHz (6-core) processors. For the failure strength
of fibers two disorder distributions were considered: a uniform
distribution between 0 and 1 and a Weibull distribution with
the probability densities

p(σth) = 1, (10)

p(σth) = m
σm−1

th

λm
exp [−(σth/λ)m], (11)

respectively. In Eq. (11) the parameter λ sets the scale of
strength values, while the exponent m controls the amount of
disorder of the system. For the Weibull exponent m two values,
m = 2 and m = 3, were considered while λ = 1 was set.
Simulations were performed at different temperatures while
varying the external load σ in a broad range, 10−3 � σ < σc.
Under ELS conditions for a Weibull-distributed fiber strength
σc can be obtained analytically as σc = λ(me)−1/m, which
yields σc ≈ 0.428 and σc ≈ 0.496 for m = 2 and m = 3,
respectively. The uniform distribution results in a lower ELS
strength value, σc = 0.25. For LLS calculations the fracture
strength σc was determined by simulations [18]. Figures 1
and 2 present a comparison of the CPU time of the KMC and
traditional sampling method as a function of the load for both
ELS and LLS schemes, respectively. It must be noted that in
the case of direct MC sampling both the temperature T and the
load σ have a strong effect on the duration of simulations: the
temperature T determines the amount of primary breakings,
while the load σ controls the effect of triggering of avalanches
of fiber failures. It follows that increasing the temperature
and the load both give rise to a faster evolution and a shorter
simulation time. In the case of the KMC the number of primary
breaking events is always 1, irrespective of the temperature,

(

(

FIG. 1. (Color online) Comparison of the CPU time for simu-
lations with the traditional approach and with the kinetic Monte
Carlo (KMC). Equal load-sharing simulations were carried out with a
bundle of N0 = 105 fibers. For the quenched disorder of fiber strength
Weibull distributions with m = 2 and 3 are considered. Results of the
KMC algorithm are indicated by the open symbols, while their filled
counterparts represent the results of the traditional method.

uniform

(

(
FIG. 2. (Color online) Comparison of the CPU time for simu-

lations with the traditional approach and with the kinetic Monte
Carlo (KMC). Local load-sharing simulations were carried out on
a square lattice of side length L = 256. For the quenched disorder
of fiber strength Weibull distributions with m = 2 and 3 and a
uniform distribution between 0 and 1 are considered. Results of the
KMC algorithm are indicated by the open symbols, while their filled
counterparts represent the results of the traditional method.

hence, the simulation time is completely insensitive to the
value of T . At higher loads more avalanches are triggered,
which reduce the number of intact fibers of costly updates, and
hence, a high load results in an acceleration of calculation. It
is important to emphasize that in the limit of low load values
the CPU time of the KMC converges to constant values for
both ELS and LLS (see Figs. 1 and 2). The reason is that here
only small avalanches are triggered and the majority of fibers
break one by one in the primary phase.

Figure 3 presents the dependence of the CPU time on
the number of fibers N0 of the bundle for ELS and LLS
simulations. Due to the global nature of the KMC algorithm
the computational time increases with the square of N0 for
parameter values which fall in the plateau regime in Figs. 1
and 2. However, if the load is close to the fracture strength σc

of the bundle, a much weaker dependence is evidenced. The
reason is that the most time-consuming part of the simulation

FIG. 3. (Color online) Size dependence of the CPU time of
kinetic Monte Carlo simulations for ELS and LLS at several load
and temperature values with two Weibull exponents. For both ELS
and LLS simulations a power-law dependence on the number of fibers
N0 is evidenced for load values which fall in the plateau regime in
Figs. 1 and 2. Straight lines represent power laws of exponent 2.
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is the determination of primary breakings, i.e., the calculation
of the breaking rates and finding the fiber to break due to
thermal noise. However, close to failure avalanche triggering
dominates, which makes a much lower contribution to the CPU
time.

V. DISCUSSION

We have presented a KMC algorithm to simulate the
fracture of fiber bundles driven by thermally induced stress
fluctuations under a constant external load. In the model ther-
mal noise gives rise to Gaussian-distributed stress fluctuations
which are added to the deterministic part of the local load
of fibers. A fiber breaks when its total load exceeds the
local failure strength. After failure events the released load
is overtaken by the remaining intact fibers with either ELS or
LLS, which in turn can trigger an entire avalanche of breakings.
In spite of its simplicity, the model grasps the main ingredients
of delayed fracture of a broad class of materials and it has
proven successful in reproducing experimental observations.

Under ELS conditions and fixed breaking thresholds (no
strength disorder) interesting macroscopic quantities of the
system can be derived analytically, however, the microscopic
dynamics of the time evolution and the microstructure of
damage can only be explored by computer simulations. When
the load sharing is localized or strength disorder is present
in the system analytical calculations are not feasible so
that theoretical investigation must rely entirely on computer
simulations. The direct MC sampling of thermal fluctuations
used in the literature on the model has the difficulty that
the computational time is proportional to the lifetime of the
system, which implies that simulations have been constrained
to a narrow region of the temperature–external load parameter
plane.

Our method is based on the assumption that the thermally
induced primary failure of fibers is independent of each other
for both load-sharing schemes. Hence, their breaking sequence
can be treated as a Poissonian process and their breaking time
can be obtained from the breaking rates, which depend on
the load and temperature. The method ensures that at a given
time only a single fiber breaks due to the driving, which then
initiates an avalanche of breakings. In the present analysis we
have focused on the computational aspects, implementation,
and efficiency of the KMC algorithm. Tests were carried

out by varying the external load and the temperature over a
broad range for two types of disorder distributions of fiber
strength. Simulations showed that the computational time of
the model does not depend on the temperature. Increasing the
external load reduces the CPU requirement because of the
triggering of extended bursts which remove the numerically
costly intact fibers from the system. In the limit of low loads
the computational time converges to a constant determined by
the system size without any dependence on the lifetime of the
system. The CPU requirement grows with the square of the
number of fibers except in the vicinity of the critical load,
where a much weaker dependence is evidenced. Compared to
the simple algorithm based on direct MC sampling of thermal
fluctuations, our KMC algorithm is not limited either by the
value of the temperature or by the external load; the entire σ -T
parameter plane is accessible by computer simulations. The
only limiting factor is the system size, i.e., the number of fibers,
which can be resolved by parallelization of the algorithm.

Another interesting continuous-time approach has been
proposed to the time-dependent failure of fiber bundles in
Refs. [25–27] based on the load-dependent lifetime of fibers.
Under ELS conditions in this model a single uniformly
distributed random number is sufficient to determine when
a fiber breaks. In our KMC algorithm there are two sources of
disorder, namely, the quenched fiber strength, which is set in
the initial state, and the annealed disorder induced by thermal
noise. A thermally induced primary breaking event requires
two independent uniformly distributed random numbers, i.e.,
one of them determines which fiber breaks, while the other
one is needed to obtain the time elapsed since the last breaking
event. This dynamics allows us to capture also the avalanches
of secondary breakings.
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