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Abstract. Discrete element modelling (DEM) is one of the most effi-
cient computational approaches to the fracture processes of heteroge-
neous materials on mesoscopic scales. From the dynamics of single crack
propagation through the statistics of crack ensembles to the rapid frag-
mentation of materials DEM had a substantial contribution to our un-
derstanding over the past decades. Recently, the combination of DEM
with other simulation techniques like Finite Element Modelling further
extended the field of applicability. In this paper we briefly review the
motivations and basic idea behind the DEM approach to cohesive par-
ticulate matter and then we give an overview of on-going developments
and applications of the method focusing on two fields where recent suc-
cess has been achieved. We discuss current challenges of this rapidly
evolving field and outline possible future perspectives and debates.

1 Introduction

Fracture, stability and fragmentation of materials have been the subject to human
interest for as long as we can think, mainly due to practical reasons. For centuries
fracture was mainly studied by designers driven by catastrophic failure events that
exhibited the poor understanding for the processes related to fracture [1–3]. Names
like da Vinci, Galilei, Griffith, Weibull, Wöhler, Inglis and others are all related to
engineering solutions to fracture [2]. The nature of fracture phenomena however im-
peded systematic theoretical studies. Not more than three decades ago mainstream
physics slowly started to study fracture and fragmentation problems, driven by the
discoveries of a young generation of researchers that made computers accessible for
their research [1,3]. Lattice models, fuse models and meshless particle models emerged
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for fracture studies that – driven by the breath-taking advances of computational and
algorithmic capabilities – proved to be very successful for studying fracture and frag-
mentation phenomena [1–3]. Around that time, Cundall proposed a particle method
with rigid body dynamics to model fracture of frictional cohesive materials, charac-
teristic to geotechnical applications [4]. Under the name Discrete Element Method
(DEM) a group of approaches emerged that generate the motion of an assembly of
particles starting from the dynamics of its constituents. The similarities of the DEM
to popular methods in other fields of research like molecular dynamics [5] or smooth
particle dynamics [6], lead to cross-fertilization in algorithmic development. Today
DEM is a powerful tool to simulate the breaking of heterogeneous materials beyond
the point of single crack growth. Various particle geometries, material response, ways
to treat cohesive, repulsive behavior and of course loss of cohesion lead to a flexible
tool-set of approaches. Strategies for higher order agglomeration, coupling to contin-
uum domains or particle based fluid solvers like lattice Boltzmann extended the reach
of DEM significantly [7–11]. Today, applications of DEM made a substantial contri-
bution to the understanding of the mechanical response and breaking phenomena of
heterogeneous materials under various types of loading conditions. Ranging from the
slowly changing sub-critical loads to the highly energetic fragmentation, DEM proved
to be an indispensable tool for investigations.
In this article we briefly review the motivations and basic ideas behind the DEM

approach, as well as, its current extension by coupling to a continuum domain. Among
the widespread applications of DEM for the fracture of heterogeneous materials we
highlight two fields where recently DEM have played a decisive role to achieve major
success. Finally we discuss remaining challenges of this rapidly evolving field and
outline possible future perspectives.

2 Discrete element models for cohesive particulate materials

Fracture and fragmentation are difficult problems to handle numerically due to the
continuous generation and evolution of crack surfaces. Classical numerical methods
such as Finite Element, Finite Differences, or Boundary Elements solve partial dif-
ferential equations of continuum mechanics, so that they are able to consider only a
small number of discontinuities and cannot encompass the entire fracturing process.
Discrete Element Modelling (DEM) is a computational approach to the deformation
and failure of cohesive frictional materials which embeds materials’ complexity by
representing it with a set of discrete elements. The method is physically based in the
sense that the elements of discretization are physical entities having mass, velocity,
..., hence, they are called particles. The interaction of particles is defined such that
the model accounts for the proper macroscopic response of the medium including
both, constitutive behavior and failure mechanisms. The approach was introduced
by Cundall and Strack [4] in 1979 which then initiated a rapid development of the
technique and a wide variety of applications in diverse fields of engineering, physics,
and geosciences [4,12–16].

2.1 Model construction

DEM is best suited for materials which are inherently disordered on the mesoscopic
scale, i.e. they are composed of grains of various shapes with complicated cohesive
coupling in between. To begin with, the model has to give a high quality represen-
tation of the microstructure of the specific material considered. To keep the problem
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Fig. 1. Demonstration of the construction of DEMs: (a) Random homogeneous packing
of spherical particles is generated by particle deposition in a rectangular container [19]. (b)
Delaunay tetrahedral mesh is constructed with the particle centers and beams are introduced
along the edges of tetrahedra. A close-up on the beam lattice is presented in [17,19]. (c) An
early stage of the impact fragmentation of a rectangular sample generated by a projectile
which hits the middle of the front side of the body. Beams are colored according to the axial
strain where stretched and compressed beams have red and green colors, respectively. Colors
are randomly assigned to fragments.

numerically tractable, particle shapes are usually idealized by spheres in three di-
mensions (3D) so that the problem of discretization is reduced to the generation of a
random homogeneous packing of spherical particles with a prescribed size distribution
and a desired density. Two classes of generation methods can be distinguished, i.e. the
dynamic and constructive methods [21–26]: Dynamic methods typically start from a
random configuration of point-like particles which are then gradually blown up to the
desired size reaching a dense arrangement in the domain of interest. As an alternative,
particles with the required extension can be placed in a volume significantly larger
than the domain of interest and then either the volume can be slowly reduced until
an appropriate packing is reached or the particle system can be compactified under
the action of a force field [13,17,19,20,22]. Already the packing generation involves
demanding simulations of the motion of particles making dynamical methods rather
time consuming. Constructive algorithms take a different strategy, namely, they are
purely based on geometrical procedures to discretize the spatial domain in terms of
spheres [23,26]. Efficient algorithms have been developed to fill containers of various
shapes which all share the feature that they lead to packings with a low coordination
number and a high porosity. The density can be increased by using the sedimen-
tation technique [21–23] or by gradual refinement of the packing using tetrahedral
meshes [23].
Under external load, the particle ensemble deforms and cracks emerge at highly

stressed locations, the physics of which has to be captured by the dynamics of inter-
particle contacts. Since the numerical representation of the deformation of particles is
computationally not feasible, contact models rely on the overlap of the spherical par-
ticles and express the normal component of the contact force in terms of the overlap
distance. In this so-called soft particle contact model, tangential forces and torques
depend on the relative displacement of the particles since contact has been estab-
lished. Realistic contact models capture dissipation, rolling and torsion resistance, as
well as elastic-plastic contact deformation [17,18,24,27,28].
Cohesion of the material arising due to bonding of its grains can be captured by

coupling neighboring particles via elastic spring or beam elements. In the most real-
istic case beams in 3D account for the stretching, compression, shear, bending, and
torsion of cohesive contacts [13,17,18]. Beam elements may act as bonds coupling ei-
ther the surfaces [13] or the centers of mass of particles [14,15,17,19]. The geometrical
features of beams, i.e. length, cross-sectional area, and moments are determined by
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Fig. 2. Snapshot of a Charpy test with master-slave coupling of non-coincident nodes. Red
elements resemble broken beams, green lines outline the edges of the 20 node quadratic brick
elements.

the particle packing which leads to disorder in the bond network. The macroscopic
response of the model is mainly determined by the constitutive laws and breaking
criteria of beams which have to be chosen to account for the observed materials’
behavior.
The primary fracture mechanism of cohesive frictional materials is the tensile and

shear failure of bonds along the grain boundaries. This is captured by DEM ap-
proaches such that failure criteria of beams are formulated in terms of axial stresses
and bending and torsion moments (strains) [4,12–15]. Cracks form due to the grad-
ual removal of cohesive elements as they fulfill the failure condition during the time
evolution of the system. The structural disorder of the particle packing and bond
network can be complemented by strength disorder treating the parameters of the
failure criterion as stochastic variables [17]. Contact forces between particles are set
on when cohesion is lost to prevent the penetration of crack faces into each other. The
time evolution of the particle system is followed by molecular dynamics simulations,
i.e. the equation of motion of all particles is solved numerically for the translational
and rotational degrees of freedom with properly set initial, boundary, and loading
conditions [5,18]. The model construction is illustrated in Fig. 1 where a sedimenta-
tion algorithm was used to generate the initial particle packing (Fig. 1(a)) [19,20].
Delaunay partitioning was carried out with the particle centers and beams were intro-
duced between particles along the edges of tetrahedra (Fig. 1(b)). Finally, the model
was applied to investigate the impact induced breakup of a rectangular specimen
(Fig. 1(c)).

2.2 Concurrent discrete/finite element coupling

Fracture in heterogeneous materials can also be understood by the flow of elastic
energy from a volume into the formation of new internal surfaces [7]. Crack growth is
thus a localization phenomenon with a spatially limited process zone. Physical access
to the dynamic processes inside this zone can be obtained on a mesoscopic level by
DEM simulation with a sufficient number of elements. However the process zone is
embedded in an elastic foundation and usually the majority of particles is needed for
representing the elastic domain, a job that can much more efficiently be dealt with
by continuum methods. The last decade has seen an avalanche of works on different
multi-scale methods for all kinds of applications and methods that can be classified
to be either hierarchical or concurrent. The latter ones embrace all approaches where
a fine-scale model is embedded and intimately coupled to a coarse-scale model like
the example shown in Fig. 2. For a comprehensive review on the methods, we refer
to [8]. As we calculate dynamic interactions in the DEM, the challenge is to couple
the DEM domain to the continuum domain in a way that the interface is without
spurious reflections, or it other words “mechanically transparent”. Since both methods
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Fig. 3. Edge-to-edge coupling of particle and continuum domain (left) and overlapping
domain method with Lagrange multiplier mesh (right).

discretize time and space, they can only resolve oscillations up to a cutoff frequency
wmax defined by the ratio of the wave speed with respect to the minimum node
distance or characteristic particle size, respectively [8]. In general the cutoff frequency
of the continuum domain wcmax >> w

DEM
max in order to benefit from a continuum

approach. Unfortunately this results in phonon reflections at the model interface for
frequencies below wcmax that need to be mitigated in one way or the other.
In principle one can impose a direct edge-to-edge or master-slave coupling and

damp the reflected phonons close to the model interface in the DEM domain to obtain
“silent boundaries” (see Fig. 2). This master-slave coupling is a standard technique
in FEM [9] and compatibility is enforced for all coupled degrees of freedom by con-
straining and mapping the slave DEM nodes onto the respective FEM master surface
positions by the shape functions of the used elements. The forces and moments from
the DEM nodes are in return added to the continuum model by standard contact
procedures. Alternatively one can impose a smooth transition between models with
an overlapping or bridging domain. The bridging domain method, proposed by Be-
lytschko and Xiao [10] avoids sharp interphases by enforcing compatibility inside an
overlapping domain by Lagrange multiplies. Both methods are schematized in Fig. 3.
The linear scaling of relative importance of energy contributions of the different do-
mains in the overlapping one by the blending function α assures a smooth transition
between the domains.
The shape functions of the Lagrange multiplier mesh, as well as element types

and geometries can differ from those of the continuum mesh. In the simplest case
linear functions on triangular elements that mesh the overlapping domain are chosen
with linear blending functions, but Dirac delta functions and higher order blending
functions are reported to work best [8]. The reason is that these strict Lagrange
multipliers enforce exact compatibility with the finite element approximation and
therefore fulfill the patch test, while other types of interpolations via shape functions
dont and ghost forces exist. To assure a smooth transition, also the extension of the
Lagrange multiplier field should be chosen such, that several FE nodes are captured
(see Fig. 4).

3 Rupture cascades in the discrete element model

Since the end of the ’70s DEM gained widespread applications and had a substantial
impact on our understanding of fracture processes of heterogeneous materials. In the
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Fig. 4. Effect of relative size of handshake domain on accuracy of a cantilever beam problem
with embedded particle mesh.

following we highlight two aspects of breakdown phenomena where the heterogene-
ity of materials plays a crucial role and recently DEM simulations combined with
the approach of statistical physics led to new understanding. First, we present how
the statistics and dynamics of crackling noise emerging in slowly compressed brittle
materials can be investigated in the framework of DEM, then we focus on the DEM
modelling of fragmentation processes induced by energetic loading.

3.1 Crackling noise during compressive failure

Macroscopic failure of heterogeneous materials under slow external driving, i.e. under
slowly increasing deformation or force, occurs as the culmination of damage accu-
mulation [1]: at the beginning of the loading process micro-cracks nucleate at the
weakest points in an uncorrelated way. Later on as the local stress fields of such de-
fects interact, spatial correlation develops, which leads to growth of existing cracks
and to an enhanced nucleation in their vicinity. The final stage of the process is
dominated by the merging of cracks leading to the emergence of a macroscopic crack
which spans the entire sample. However, this damage accumulation is not a “smooth”
process, it proceeds in bursts of cracking events on the micro and meso scales. Such
intermittent breaking avalanches generate elastic waves which can be recorded in the
form of acoustic noise [1–3]. The acoustic emission technique is one of the most im-
portant diagnostic tools providing very valuable information about the microscopic
dynamics of fracture [29]. The recent progress achieved in experimental techniques
addressed the question whether crackling noise measurements could be used to fore-
cast the imminent catastrophic failure event. The problem has a high importance for
the safety assessment of engineering constructions and for the forecasting of natural
catastrophes such as landslides and earthquakes [30–32].
Statistics of breaking bursts is usually investigated in the framework of stochas-

tic lattice models, which are based on regular lattices of springs, beams, fibers, or
fuses [1,3]. They have the advantage of allowing for a straightforward identification
of breaking avalanches, however, they impose simplifications on the micro-structure
of materials and on the dynamics of local breakings. Stochastic lattice models have
qualitatively reproduced the integrated power law statistics of crackling noise and
revealed interesting effects of the amount of disorder, friction, and range of load re-
distribution on the value of the exponent [3,33]. Both, under field conditions and in
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Fig. 5. (a) Uniaxial loading of a cylindrical specimen of 20000 particles was carried out in
such a way that a few particle layers on the top and bottom were clamped (gold color) and
the top layers were moving downward at a constant speed while the bottom was fixed. (b)
Constitutive curve σ(ε) together with the sequence of breaking bursts in a single simulation.
The burst size ∆ is plotted at the strain ε where the burst occurred. The yellow line indicates
the moving average of burst sizes calculated over 50 consecutive events. The inset presents
a magnified view on a smaller segment of the time series.

engineering applications, materials are often subject to compressive loading. Hence,
the computational modelling of crackling noise under compression have a high prac-
tical importance, however, in this case lattice models of fracture face difficulties to
fully capture the relevant microscopic mechanisms. To overcome this problem, re-
cently, a DEM approach has been proposed to investigate the dynamics and statistics
of rupture cascades [19,20].

3.1.1 Cascades of beam breaking

In DEM crackling bursts are identified as cascades of micro-fractures, i.e. correlated
trails of breaking particle contacts which makes it possible to decompose the process
of damage accumulation into a time series of elementary events of fracturing [19,20].
In these studies strain controlled uniaxial compression of cylindrical samples was
simulated (see Fig. 5) measuring the macroscopic response of the system and the
microscopic evolution of damage. A representative example of the constitutive curve
σ(ε) of the system is shown in Fig. 5(b) where a quasi-brittle behavior is evidenced.
Simulations revealed that in spite of the smooth macroscopic response, on the micro-
scale the accumulation of damage, i.e. the breaking of beam elements proceeds in
a jerky way. The reason is that after a beam breaks, the released stress must get
redistributed in the surrounding volume. It enhances the load on neighboring beams
which may induce further breakings and in turn it can even trigger an entire avalanche
of breakings. In a DEM framework the breaking sequence of beams can be traced
by recording the time tbi and position r

b
i of single breakings. In order to quantify

the temporal clustering of breaking events it is assumed that consecutive breaking
events are correlated if they follow each other within a correlation time tc, i.e. if
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Fig. 6. Probability distribution of the duration p(T ) of bursts (a) and of waiting times p(tw)
(b) between consecutive events averaged over 800 samples. (c) The size distribution of bursts
p(∆) calculated in windows of 200 events. The legend indicates which events are included in
the analysis. The continuous black lines represent fits with Eq. (1).

the condition tbi+1 − tbi < tc is fulfilled. The value of the correlation time tc can be
physically motivated, namely, it is the time needed for the stress release wave to cross
the specimen.
Based on the concept of correlated breakings, bursts of local failure events can be

identified. The burst size ∆ is the number of beams breaking in the avalanche which is
related to the new crack surface created by the burst. It can be observed in Fig. 5(b)
that during the loading process the size of bursts ∆ has strong fluctuations due
to the quenched structural disorder of the material but its average has an increasing
tendency towards failure. This generic behavior is in a nice qualitative agreement with
the outcomes of acoustic emission measurement on heterogeneous materials [3,29–32].
In the framework of DEM, further useful quantities can be defined to characterize
single crackling avalanches and the evolution of their time series: Besides the burst
size ∆, the time of occurrence t and duration T are of particular interest together
with the amount of energy E released by bursts. The temporal sequence of avalanches
can be characterized by the waiting time tw between consecutive events.

3.1.2 Statistics of crackling events

The integrated statistics of the characteristic quantities, i.e. the probability distribu-
tions of the burst size ∆, energy E, and duration T , furthermore, of the waiting time
tw – considering all events up to failure – proved to have a power law functional form
with a stretched exponential cutoff

p(x) ∼ x−α exp [−(x/x∗)c]. (1)

Here x is a generic notation for ∆, E, T and tw. Representative examples are shown in
Figs. 6(a) and (b) for the distributions of burst durations p(T ) and waiting times p(tw),
where the continuous lines represent high quality fits with Eq. (1). The results of DEM
simulations [19,20] have an excellent agreement with the experimental findings on
the statistics of acoustic bursts accompanying the compressive failure of sedimentary
rocks such as sand stones [30–32].
Based on the detailed information DEM provides about the evolution of the crack-

ling time series, it is also possible to investigate how the statistics of crackling events
changes as the system approaches macroscopic failure. Figure 6(c) demonstrates size
distributions p(∆) considering bursts in windows of 200 consecutive events instead of
the integrated statistics. For all curves the functional form of Eq. (1) is evidenced,
however, the value of the exponent of the power law regime decreases from 4.25 to
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1.5 when approaching macroscopic failure [19,20]. This behavior is in an excellent
qualitative agreement with the so-called “b-value” anomaly observed for earthquakes
and in laboratory experiments on compressive fracture of rocks, i.e. the exponent
b of the magnitude distribution of crackling events decreases when approaching the
critical point of global failure [30–32].
Recent simulations also demonstrated the potential of DEM to investigate the spa-

tial structure of damage, the gradual emergence of spatial correlation of consecutive
events, the formation of the damage band due to the dominance of shear in the failure
process, and even the gradual fragmentation of pieces in the damage band [19,20].

3.2 Fragmentation phenomena

Energetic loading leads to fragmentation with a multitude of cracks forming simulta-
neously. This leads to a rapid disintegration of solids into a large number of pieces.
On a longer time scale repeated loading or shearing under a high pressure give rise
to a similar outcome with fragment sizes spanning a broad range with a scale free
probability distribution [34–36]. In Nature fragmentation of solid bodies occur on
a broad range of length and time scales from the collision induced breakup of as-
teroids down to the degradation processes in a fault gauge. Detailed knowledge on
fragmentation is required in the industry where it is exploited by technologies of min-
ing and ore processing. In particular such applied but also fundamental questions on
fragmentation processes are most suitably answered by DEM simulations.

3.2.1 Universality in fragmentation

The most remarkable feature of fragmentation phenomena is that the value of the
power law exponent of the size distribution of pieces shows an astonishing robustness
being independent of the way of loading, of material properties, and relevant length
scales. During the past decades the understanding of the observed universality has
been the main driving force of fragmentation research. Experimental and numerical
investigations have revealed that the universality classes of fragmentation phenom-
ena are mainly determined by the dimensionality of the system [34–37] and by the
brittle/ductile character of the mechanical response of the material [44]. For brittle
materials the underlying breakup mechanisms originate from crack tip instabilities
that lead to repeated crack branching-merging [37]. Combining the branching-merging
scenario with the Poissonian nature of the initial nucleation of major cracks a complex
functional form was proposed which describes the complete mass/size distribution of
fragments p(m) including the cutoff regime, as well [37]

p(m) ∼ (1− β)m−τ exp (−m/m0) + β exp (−m/m1). (2)

Here, τ denotes the exponent of the power law regime, m0 and m1 are characteristic
fragment masses, and β controlls the contribution of the two terms of the right hand
side [37]. The universality of fragment mass/size distributions is demonstrated in
Fig. 7 for closed shells in 3D where shells made of three different materials were
fragmented by explosion and impact against a hard wall. In the regime of small
fragment masses best fit was obtained with Eq. (2) using a unique exponent τ =
1.35±0.02 which defines the universality class of brittle shells. High speed imaging of
shell fragmentation provided direct proof of the predicted breaking scenario [38], and
additionally it revealed that not only fragment sizes but even the shape of fragments
obeys scaling laws [39].
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Fig. 7. Universality of fragment mass distributions of shell systems for different materials
and types of energetic loading: brittle eggshells were fragmented both by explosion and
impact against a hard wall. Glass balls were exploded, while plastic shells were impacted
to a hard wall after making them brittle at the temperature of liquid nitrogen [38]. The
continuous line represent fits with Eq. (2) such that the value of τ is 1.35 in all cases
showing the universality.

3.2.2 DEM simulations of fragmentation processes

Due to the overwhelming difficulties experimental investigation face during fragmen-
tation, DEM simulations had a major contribution to the development of the field.
Energetic loading like explosion or impact generate a large number of simultaneously
growing cracks which interact with each other in a complicated way. DEM has the
capabilities to handle this high degree of complexity and allows for a realistic treat-
ment of fragmentation processes.
Detailed studies with DEM in various embedding dimensions revealed a transi-

tion from damage to fragmentation [40] at a critical imparted energy already for
two-dimensional systems. The existence of the damage-fragmentation critical point
has been confirmed by further DEM simulations [41,42] of various types of fragmenta-
tion processes, and it was also reproduced by experiments [43]. The result implies that
universality of fragment size distributions is due to the underlying continuous phase
transition. The entire richness of fragmentation mechanisms however could only be re-
solved by full 3D systems once a significant particle number could be considered [17].
Contrary to the simple branching-merging scenario it became clear that there ex-
ist different mechanisms which get activated as the imparted energy increases and
their interaction determines the final breaking scenario [17]. Fragmentation processes
of plastically deforming materials show an even higher complexity: power law size
distribution of fragments has been confirmed by experiments, however, with an ex-
ponent significantly lower than for brittle materials. DEM simulations clarified that
shear induced breaking is responsible for the emergence of the novel universality class
which makes plastic fragmentation similar to the one of liquid droplets [44]. The ef-
fect of material microstructures on the outcome of the fragmentation was studied
by mapping material micro-structures of multi-phase materials and composites onto
the DEM systems [45]. Surprisingly the size distribution exponent is rather robust
with respect to such issues, strengthening the universal character of fragmentation.
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a) b) c)

Fig. 8. (a) Discrete element simulation of the fragmentation of a brittle sphere induced by
impact against a hard wall [17]. The impact velocity falls slightly above the critical point
of the damage-fragmentation transition. (b) In a similar impact simulation of a plastically
deforming sphere at low impact velocities, a single crack occurs in the middle and a large
permanent deformation remains around the impact site [44]. (c) Impact experiments of
plastic balls revealed a similar breakup mechanism in a good quantitative agreement with
DEM simulations [44].

Representative examples of DEM simulations of fragmentation processes are pre-
sented in Fig. 8 both for brittle and ductile materials. The figure also demonstrates
the agreement of simulations with experiments.

4 Conclusions and future challenges

In the present paper we briefly reviewed the basic ideas behind DEM for heteroge-
neous materials and highlighted two fields where this modelling approach played a
decisive role to reach recent success. Profiting from the increase of computer power
and the success of hybridization of modelling approaches simulation studies of frac-
ture and fragmentation phenomena can help to resolve current debates of the field
and to reach new challenges. When studying statistical features of the fracture of
heterogeneous materials such as the size effect of macroscopic strength and crack-
ling noise generated by avalanches of micro-fractures, stochastic lattice models have
been successfully applied under tensile loading conditions. However, under compres-
sive loading they usually have difficulties to account for all relevant mechanisms. We
have demonstrated that DEM offers an adequate modelling framework for crackling
phenomena under compression reproducing all observed scaling laws of rupture cas-
cades obtained by field measurements, as well as, in laboratory experiments [19,20].
The results imply that DEM has a high potential to understand the emergence of
catastrophic failure in porous granular media challenging Earth sciences and engi-
neering. In natural catastrophes such as landslides and earthquakes, the available
data are often incomplete and provide only a limited insight into the complexity of
processes that lead to failure. The main contribution of DEM is that it can capture
all relevant processes down to the length scale of single grains, and hence, it can re-
veal mechanisms hidden for experimental approaches. With these capabilities for the
investigation of the statistics and dynamics of rupture cascades DEM may give rise
to a breakthrough in developing predictive models of catastrophic failures in the near
future.
Research on fragmentation faces similar challenges. Recent experiments on impact

induced fragmentation of one- and two-dimensional objects revealed that the power
law exponent τ of the fragment size/mass distribution increases with the imparted
energy [46]. DEM simulations performed in two dimensions confirmed this finding and
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yielded a logarithmic dependence of τ on the energy [47,48]. The results are remark-
able because on the one hand they question universality and the underlying phase
transition picture of the damage-fragmentation transition, and on the other hand,
they have relevance for industrial applications, as well. However, recent DEM studies
on the breakup of spherical bodies due to impact against a hard wall demonstrated
that the apparent increase of the exponent can be removed by rescaling the mass/size
distributions with the average fragment mass [41]. Finite size scaling proved to be
indispensable to correctly determine characteristic exponents of fragmentation phe-
nomena which again shows the importance of large system sizes and calls for further
investigations to settle the problem. Both experimental and theoretical investigations
have shown that the dimensionality of the breakup process, especially the interplay
of the dimensionality of the object and of the embedding space, plays a crucial role
in the selection of the dominating mechanism of dynamic cracking and fragment for-
mation [37,38,49]. This addresses the opportunity that in certain cases universality
can be violated and the energy dependence can be understood through the gradual
activation of different breakup mechanism and the mixing of them as the imparted
energy is varied.
Advancement of measuring technologies has made it possibly to go beyond the

analysis of the mass/size distribution of fragments in the final state of the breakup
process. There is an increasing amount of information available on the velocity of
pieces, as well. It is a great challenge for theoretical investigations to understand
what determines the functional form of the velocity distribution of fragments, and
whether the mass and velocity of fragments are correlated. Beyond their scientific im-
portance both problems have also practical relevance: on orbit fragmentation events
are the main source of space debris where the velocity of debris pieces and the presence
of mass-velocity correlation are crucial for estimating the risk of damaging collisions
with satellites.
Today particle models for fracture and fragmentation are at the verge of becom-

ing significant tools for simulating industrial processes. The dilemma of either using a
large number of spherical particles or a significantly smaller number of aggregated or
polygonal particles for discretization is slowly diluted by the development of computer
hardware and should vanish within the next decade. Additionally, the incorporation
of DEM into FEM workbenches will bring these methods to a wider community of
applied users. With every new release of FEM simulation suites, software companies
extend functionality, recently to incorporate particle methods. Even though still the
simplest methods are implemented, soon we might see advanced DEM embedded in
FEM code with robust concurrent coupling. As the continuum and discrete worlds
continuously merge inside commercial software packages users are increasingly liber-
ated from technicalities of discretization and implementation issues.

This work was supported by the projects TAMOP-4.2.2.A-11/1/KONV-2012-0036 and
OTKA K84157. The project is implemented through the New Hungary Development Plan,
co-financed by the European Union, the European Social Fund and the European Regional
Development Fund. This work is devoted to our mentor and friend Hans J. Herrmann for
his 60th birthday – a researcher that stimulated a multitude of innovations in this field.
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33. R.C. Hidalgo, F. Kun, K. Kovács,, I. Pagonabarraga, Phys. Rev. E 80, 051108 (2009)
34. H.J. Herrmann, F.K. Wittel,, F. Kun, Physica A 371, 59 (2006)
35. J. Aström, Adv. in Phys. 55, 247 (2006)
36. D.L. Turcotte, J. Geophys. Res. 91, 1921 (1986)
37. J.A. Aström, F. Ouchterlony, R.P. Linna,, J. Timonen, Phys. Rev. Lett. 92, 245506
(2004)

38. F.K. Wittel, F. Kun, H.J. Herrmann,, B.-H. Kroplin, Phys. Rev. Lett. 93, 035504 (2004)
39. F. Kun, F.K. Wittel, H.J. Herrmann, B.-H. Kröplin,, K.-J. Maloy, Phys. Rev. Lett. 96,
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