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We investigate the statistics of record breaking (RB) events in the time series of crackling
bursts in a fiber bundle model of the creep rupture of heterogeneous materials. In the
model fibers break due to two mechanisms: slowly accumulating damage triggers bursts
of immediate breakings analogous to acoustic emissions in experiments. The rupture
process accelerates such that the size of breaking avalanches increases while the waiting
time between consecutive events decreases toward failure. Record events are defined
as bursts which have a larger size than all previous events in the time series. We analyze
the statistics of records focusing on the limit of equal load sharing (ELS) of the model
and compare the results to the record statistics of sequences of independent identically
distributed random variables. Computer simulations revealed that the number of records
grows with the logarithm of the event number except for the close vicinity of macroscopic
failure where an exponential dependence is evidenced. The two regimes can be attributed
to the dominance of disorder with small burst sizes and to stress enhancements giving
rise to efficient triggering of extended bursts, respectively. Both the size of records
and the increments between consecutive record events are characterized by power law
distributions with a common exponent 1.33 significantly different from the usual ELS
burst size exponents of fiber bundles. The distribution of waiting times follows the same
behavior, however, with two distinct exponents for low and high loads. Studying the
evolution of records we identify a load dependent characteristic scale of the system which
separates slow down and acceleration of RB as failure is approached.
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1. INTRODUCTION
The fracture of heterogeneous materials proceeds in bursts gen-
erated by newly nucleating cracks or by intermittent propagation
steps of crack fronts [1]. Measuring acoustic emissions of break-
ing bursts the fracture process can be decomposed into a time
series of crackling events, which contains valuable information
about the microscopic dynamics of fracture [2–4]. The analysis
of crackling time series has usually been focused on the inte-
grated statistics of events such as the probability distribution of
the size (energy) and duration of bursts and of the waiting time
between consecutive events. All these distributions are found to
have power law functional form with exponents having a high
degree of robustness with respect to materials’ details [2–4].

In applications materials are often subject to constant sub-
critical loads which may lead to failure in a finite time. Such
creep rupture processes are typical for components of engineering
constructions and they also play a crucial role in the emer-
gence of natural catastrophes such as land slides, stone and snow
avalanches, and earthquakes [5–14]. It is of high practical impor-
tance to understand how the creeping system approaches macro-
scopic failure using the data of acoustic monitoring [2, 5, 8, 13].
Computer simulations of discrete stochastic models of creep rup-
ture are indispensable to analyze how the time series of crackling
events evolves and to identify possible signatures of the immi-
nent catastrophe. A unique feature of this evolution is that the

rupture process is highly non-stationary, i.e., approaching failure
larger and larger bursts are triggered while the process acceler-
ates indicated by the decreasing waiting time between consecutive
events [5, 8]. On the macro-scale, the strain rate has been found
to exhibit time-to-failure power law behavior [2, 5, 6, 11] which
is accompanied by the emergence of an Omori-type acceleration
of the rate of bursts on the micro-scale [15].

In the present paper we investigate the evolution of the crack-
ling time series of creep rupture by analyzing the statistics of
record breaking (RB) bursts in a fiber bundle model (FBM) of
creep failure. Records are bursts which have the largest size since
the beginning of the time series, hence, their behavior involves
extreme value statistics [16, 17]. Motivated mainly by climate
research [18] and by the investigation of earthquake time series
[19–22] interesting analytical results have recently been obtained
for the RB statistics of sequences of independent identically dis-
tributed (IID) random variables. The statistics of records has
proven useful to identify trends in time series of measurements
and to infer correlations of events [19, 21]. Focusing on the limit
of equal load sharing of our FBM we demonstrate that the record
breaking statistics of crackling events provides novel insight into
rupture phenomena. Comparing the outcomes of large scale com-
puter simulations to the corresponding IID results on records we
can identify regimes of the failure process dominated by the dis-
order of materials and by the enhanced triggering of breaking
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avalanches toward failure. The size distribution of records proved
to have a power law form with a novel exponent of equal load
sharing FBMs. Simulations revealed the emergence of a load
dependent characteristic record rank which separates slow down
and acceleration of RB when approaching failure.

2. MATERIALS AND METHODS
To investigate the time series of breaking bursts we use a generic
FBM of creep rupture introduced recently [15, 23–27]. We
briefly summarize the main ingredients of the model construction
emphasizing aspects most relevant for the present study.

2.1. FIBER BUNDLE MODEL WITH TWO BREAKING MECHANISMS
In the framework of the model the sample is discretized in terms
of a bundle of parallel fibers which have a brittle response with
identical Young modulus E. The bundle is subject to a constant
external load σ0 below the fracture strength σc of the system paral-
lel to the fibers’ direction. Fibers are assumed to break due to two
physical mechanisms: immediate breaking occurs when the local
load σi on fibers exceeds their fracture strength σi

th, i = 1, . . . , N.
Under a sub-critical load σ0 < σc this breaking mechanism would
lead to a partially failed configuration with an infinite lifetime.
Time dependence is introduced in such a way that those fibers,
which remained intact, undergo an aging process accumulating
damage c(t). The damage mechanism represents the environ-
mentally induced slowly developing aging of materials such as
corrosion cracking and thermally or chemically activated degra-
dation [15, 23–26] similar to damage dynamics based models of
rock fracture developed for instance in [28]. The rate of damage
accumulation �ci is assumed to have a power law dependence on
the local load

�ci = aσγ

i �t, (1)

where a is a constant and the exponent γ controls the time scale of
the aging process with 0 ≤ γ < +∞. The total amount of damage
ci(t) accumulated up to time t is obtained by integrating over the
entire loading history of fibers ci(t) = a

∫ t
0 σi(t′)γdt′. Fibers can

tolerate only a finite amount of damage so that when ci(t) exceeds
the local damage threshold ci

th the fiber breaks. Each breaking
event is followed by a redistribution of load over the remaining
intact fibers. Two limiting cases of load sharing are usually con-
sidered in FBMs: under equal load sharing (ELS) conditions all
the intact fibers keep the same amount of load so that the load
on a single fiber is σi = Nσ0/(N − i) after the breaking of i fibers.
ELS realizes the mean field limit of FBMs where no stress hetero-
geneity can arise. In the opposite limit of localized load sharing
(LLS) the load of broken fibers is equally redistributed solely over
their intact nearest neighbors in the bundle. LLS leads to a high
stress concentration around failed regions and it gives rise to the
emergence of spatial correlations between consecutive breaking
events. In the present study we consider only the ELS case where
the homogeneous stress field hinders spatial correlation. In the
model the quenched heterogeneity of materials is represented by
the randomness of breaking thresholds σth

i , cth
i , i = 1, . . . , N. For

simplicity, for both threshold values we assume uniform distri-
butions between zero and one. Since under ELS the value of the

exponent γ only controls the time scale of creep [15] the damage
parameters were fixed to γ = 1 and a = 1.

When the load is put on the bundle, first some week fibers
break immediately which may generate further breakings until a
stable configuration is reached where all remaining intact fibers
can sustain the elevated load. The time evolution of the creeping
system starts from this partially failed configuration [23, 24]. The
present setup of the model implies that the critical stress where
immediate catastrophic failure occurs is equal to its static value
σc = 0.25 [23–25]. In the presentation of the results the constant
external load level will be characterized by the ratio σs = σ0/σc

which can take values in the range 0 < σs ≤ 1.

2.2. BURSTS DRIVEN BY DAMAGE SEQUENCES
The separation of time scales of the slow damage process and
of immediate breaking leads to a highly complex time evolu-
tion in agreement with experiments [15, 24–27]: starting from
the initial configuration damaging fibers break slowly one-by-one
gradually increasing the load on the remaining intact fibers. After
a certain number �d of damage breakings the load increment
becomes sufficient to induce the immediate breaking of a fiber
which in turn triggers an entire burst of immediate breakings.
As a consequence, the time evolution of creep rupture occurs as
a series of bursts corresponding to the nucleation and propaga-
tion of cracks, separated by silent periods of slow damaging. The
size of bursts � is defined as the number of fibers breaking in
avalanches. The number of fibers breaking in a damage sequence
and its duration determine the length of the damage sequence
�d and the physical waiting time T between consecutive events,
respectively.

Figure 1 shows a representative example of the time series of
bursts as the system evolves toward failure. In order to have a
clear view on the details of the sequence of events we intentionally
used a relatively small system of N = 105 fibers subject to the load
σs = 0.001 which gave rise to 9793 bursts. The size � of bursts is
shown in the figure as a function of the discrete time, i.e., order
number or natural time n = 1, 2, . . . so that no information is
presented about the physical waiting time T elapsed between the

FIGURE 1 | Time series of bursts in a mean field (ELS) simulation of

the FBM of creep. For demonstration purposes a relatively small system
N = 105 is presented at the load σs = 0.001 giving rise to 9793 avalanches.
In order to have a clear view on the structure of the time series,
sub-sequences starting at record breaking events are highlighted by
different colors. The horizontal lines serve to demonstrate the increments
between consecutive record bursts.

Frontiers in Physics | Interdisciplinary Physics February 2014 | Volume 2 | Article 8 | 2

http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics/archive


Danku and Kun Record breaking in creep rupture

bursts. Strong fluctuations of the burst size � can be observed
which is caused by the quenched disorder of fiber strength. The
time series has a non-stationary behavior which is indicated by
the increasing average size of bursts. Of course, the physical wait-
ing time T decreases between consecutive events, however, this
information is not visible in this representation. (The analysis of
waiting times of the model can be found in [15, 24, 25].)

A record of the time series is a burst which has a size �r larger
than any previous events. Consecutive records are identified by
their increasing rank k as k = 1, 2, 3, . . . which occurred as the
nkth burst of the complete time series. The first burst n = 1 is by
definition considered to be a record of rank k = 1 with n1 = 1.
In the example of Figure 1 all together 18 RB events are identi-
fied �k

r (k = 1, . . . , 18), which are highlighted by using different
colors for the consecutive smaller events. It can be observed that
RB events form a sub-sequence of bursts with monotonically
increasing size, however, both the record size and the number of
avalanches between two consecutive records exhibit strong fluc-
tuations. In order to characterize these features we introduce the
size increment δk and the waiting time mk between two records
with the definitions

δk = �k + 1
r − �k

r , and mk = nk + 1 − nk, (2)

respectively. Note that the catastrophic burst which breaks all
remaining intact fibers and destroys the bundle is not included
in the time series so that the last burst in the bundle may not be
an RB event.

3. RESULTS
To investigate the occurrence of RB events during the rupture
process computer simulations were carried out for a system of
size N = 107 fibers averaging over 104 realizations of the thresh-
old disorders at each load value σs. The external load σs was
varied over a broad range 0.001 ≤ σs ≤ 0.9, where the lim-
its were set to have a sufficient number of bursts in the time

series. We identify all RB avalanches �k
r that occur up to macro-

scopic failure of the bundle and carry out a detailed analysis of
their statistics.

3.1. NUMBER OF RECORD BREAKING AVALANCHES
An important feature of our system is that under low load values
most of the fibers break due to slow damaging since the result-
ing load increments are too small to trigger extended bursts of
immediate breakings. Figure 2A shows that the fraction of fibers
breaking in avalanches 〈dburst〉 and due to damage 〈ddam〉 are
monotonically increasing and decreasing functions of the exter-
nal load σs, respectively. The two curves intersect each other at
the characteristic load σ∗

s ≈ 0.48, which coincides with the posi-
tion of the maximum of the average number of avalanches 〈N�〉.
The result demonstrates that for σs < σ∗

s damage dominates the
failure process, while the vicinity of catastrophic failure σs > σ∗

s is
controlled by the bursting activity with large burst sizes � and a
decreasing number N� of bursts (see also [25]).

Figure 3A presents the average number of records 〈Nn〉 that
occurred until n avalanches have been generated in the time series
at several load values. Due to the breaking dynamics described
above at low loads avalanches remain small typically comprising
a few breaking fibers, and hence, new records mainly occur close
to macroscopic failure. For instance, at loads σs ≤ 0.01 the num-
ber of records has very low values 〈Nn〉 < 3 up to large n followed
by a fast increase in the vicinity of the failure point. As σs increases
the qualitative form of the 〈Nn〉 curves remains the same, they just
shift to higher record numbers due to the more intensive trigger-
ing of larger bursts at high loads. The most important feature of
the record number 〈Nn〉 is that it has a logarithmic dependence
on n over a broad range, which is in agreement with the ana-
lytic prediction of the logarithmic dependence of record numbers
of IIDs on the event number n [17, 21]. The result implies that
except for the close vicinity of macroscopic failure disorder domi-
nates the process of creep rupture, and the occurrence of breaking
avalanches can be well approximated as a stochastic process of

FIGURE 2 | (A) Fraction of fibers breaking in bursts
〈
dburst

〉
and due to

damage
〈
ddam

〉
as function of load σs together with the number of bursts〈

N�

〉
. The quantity

〈
dburst

〉
was calculated as the sum of the size of all

bursts that occurred up to failure. The straight line has slope 0.87,
furthermore, the vertical dashed line indicates the position of the
characteristic load σ∗

s = 0.48. (B) Ratio of the average size of bursts 〈�〉

and of damage sequences 〈�d 〉 as a function of the order number n of
bursts for several load values. (C) Average size of the largest record
breaking event

〈
�max

r
〉

and the average value of the largest waiting time〈
mmax〉 between consecutive records as function of load. All quantities are
normalized by the number of fibers N in the bundle. The upper and lower
straight lines have slope 0.625 and 0.65, respectively.
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FIGURE 3 | (A) Average number of records
〈
Nn

〉
as a function of the total

number of avalanches n for several load values. For low record numbers
logarithmic dependence is evidenced, which is followed by a faster
exponential increase. The continuous black lines represent fits with
Equation (3). (B,C) Fitting parameters B, ξ , and D of Equation (3) as function
of the external load σs. (D) Probability distribution of the total number of
records Ntot

n occurred up to failure for several load values. The distributions
obtained at different loads are rescaled with the corresponding average and
standard deviation. The continuous line represents the standard Gaussian
Equation (4).

IIDs. However, close to failure the increase of the stress on single
fibers results in enhanced triggering which in turn gives rise to a
sudden increase of records. The complete curves of 〈Nn〉 (n) can
be characterized by the functional form

〈Nn〉 = A + B ln n + C exp
[
(n/D)ξ

]
, (3)

where the exponential term describes the rapid generation of
high rank records close to catastrophic failure. It can be observed
in Figure 3A that Equation (3) provides an excellent fit of the
numerical data over the complete load range considered. The
additive parameter A has the same value A = 0.38 for all loads,
while the multiplication factor B increases from 0.16 to 0.87 in
the load range considered (see Figure 3B). The shape of the 〈Nn〉
curves in the accelerating regime is controlled by the exponent
ξ which is nearly constant ξ ≈ 1.5 for loads below σ∗

s then it
decreases to 0.33 as σs increases in Figure 3B. The scale parameter
D mainly sets the transition point between the two regimes dom-
inated by disorder and by stress enhancement. It can be seen in
Figure 3C that D increases with the external load and has a max-
imum in the vicinity of σ∗

s , which is consistent with the behavior
of the total number of bursts 〈N�〉 in Figure 2A reflecting the
overall dominance of damage and bursts in the failure process on
the two sides of σ∗

s . To support the emergence of a characteristic
event number D separating different regimes of bursting activity,
Figure 2B presents the ratio of the average size of bursts 〈�〉 (n)

and the average size of the damage sequence 〈�d〉 (n) that initi-
ated the nth event. At the beginning of the process a large number

of fibers must break randomly one-by-one in damage sequences
until a small burst of size 1–2 fibers is initiated giving rise to
〈�〉 / 〈�d〉 < 1. Comparing to Figure 3A the onset of the rapid
exponential increase of RB corresponds to the event number from
where extended bursts are triggered by shorter damage sequences
due to the effect of stress enhancements. As the consequence
of the increasing burst size and shortening damage sequences it
becomes more and more probable that a record gets broken after
a fewer bursts leading to the exponential increase of the record
number.

Figure 3D shows that the probability distribution p(Ntot
n , σs)

of the total number of records accumulated up to failure has a
Gaussian form. The distributions p(N tot

n , σs) obtained at different
loads were rescaled by the corresponding average

〈
Ntot

n

〉
and stan-

dard deviation σNtot
n

of the total number of records which results
in a high quality collapse in the figure. The scaling function has a
good agreement with the standard Gaussian

p(x) = 1√
2π

exp
(−x2/2

)
, (4)

which has been predicted for RB sequences of IIDs [17, 21]. The
Gaussian functional form prevails in spite of the complex effect
of the acceleration of the occurrence of records toward failure.
Deviations can be observed at the tails of the distribution which
may indicate a slight right-handed asymmetry.

3.2. STATISTICS OF RECORD SIZES AND WAITING TIMES
Recently, it has been shown that in our model the size distribution
of avalanches p(�) accumulating all crackling events up to failure
during the creep process follows a power law distribution [24, 25]

p(�) ∼ �−τ, (5)

where the value of the exponent τ coincides with the usual
mean field exponent of FBMs τ = 5/2 [29]. As the external load
approaches the critical value σs → 1 a crossover is obtained to a
lower exponent τ = 3/2 [25] in agreement with the mean field
prediction of simple FBMs subject to a quasi-statically increasing
load [30–32].

Figure 4A presents the size distribution p(�r, σs) of RB bursts
accumulating all records up to failure at different load values.
The distributions can be well described by a power law fol-
lowed by a finite size cutoff of exponential form. Since at higher
loads larger avalanches are triggered the cutoff of the distribu-
tions shifts to higher values but the functional form remains the
same for all loads. Figure 4B illustrates that rescaling the two
axis in Figure 4A with appropriate powers of the external load
a high quality data collapse can be achieved. The result implies
that record size distributions obtained at different loads obey the
scaling structure

p(�r, σs) = �−τr
r φ(�r/σ

α
s ), (6)

where the exponent α controls the load dependence of the cutoff
record

〈
�max

r

〉 ∼ σα
s . (7)
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FIGURE 4 | Size distribution of record breaking bursts (A) and their

increments (C) for several load values. (B,D) demonstrate that rescaling
the distributions with the external load high quality collapse of the curves
can be achieved. The continuous lines in (B,D) represent fits with
Equation (6).

The power law dependence of the cutoff record size
〈
�max

r

〉
is also

confirmed by Figure 2C, where the largest records �max
r of sin-

gle simulations were directly averaged. Best fit is obtained with
the exponent α = 0.65 which provides also the best collapse in
Figure 4B. Note that due to the normalization of the distribu-
tions the scaling exponent used for the transformation along the
vertical axis has to be equal to the product of τr and α which
is explicitly indicated in Figure 4B. The size distribution expo-
nent of record bursts τr = 1.33 ± 0.03 proved to be significantly
smaller than the usual mean field burst size exponents of FBMs
[24, 25, 29–31], which is the consequence of the relatively high
frequency of large burst sizes in the RB sequence with respect
to the complete time series. The short flat region for the small-
est bursts occurs due to down sampling of small sized events
in the RB sequence. To fit the scaling function in Figure 4B the
cutoff function φ(x) was assumed to have a stretched exponen-
tial form φ(x) ∼ exp(−(x/x0)

β) with β = 0.65. It is important
to emphasize that the distribution p(�r, σs) has a homogeneous
evolution with increasing external load, i.e., the exponent τr

remains constant when the critical load is approached σs → 1.
For the advancement of the RB sequence of bursts during

the evolution of the rupture process the size increments δk =
�k+1

r − �k
r between consecutive records carry also interesting

information. Figure 4C presents that the distribution p(δr, σs) of
increments δr has a qualitatively similar behavior to record sizes
p(�r, σs), i.e., power laws are obtained followed by an exponen-
tial cutoff as described by Equation (6). Careful scaling analysis
in Figure 4D shows that both the value of the exponent τr of
the power law regime and the scaling exponent α of σs have
the same values for the two distributions, the only difference
is that the cutoffs of increments are smaller than the one of
record sizes.

After a record occurred as the nkth avalanche of the time series
it gets broken after a certain number of events by the nk+1th
avalanche. The waiting time mk between RB avalanches defined
by Equation (2) is an important characteristic quantity of the RB
sequence of bursts. Figure 5A presents the accumulated statistics
of waiting times m considering all records k in the RB sequence
for several load values. Based on the statistics of extremes [16], for
IIDs a power law behavior is expected p(m) ∼ m−z with the expo-
nent zIID = 1 [17]. It can be observed in the figure that our results
are generally consistent with the IID prediction, however, distri-
butions p(m, σs) obtained below and above σ∗

s form two groups
of different power law exponents. Figures 5B,C demonstrate that
rescaling m and the distributions p(m, σs) with appropriate pow-
ers of the external load σs, good quality data collapse can be
achieved in both load regimes. The scaling structure is similar to
Equation (6)

p(m) = m−zψ(m/σα
s ), (8)

however, both exponents z and α proved to have different val-
ues below and above the characteristic load σ∗

s . In Figures 5B,C
best collapse is obtained with the exponents z = 0.72, α = −1.45
(σ∗

s < σs) and z = 1.15, α = 0.625 (σ∗
s > σs). The value of z

reflects an interesting aspect of the dynamics of the creep process:
the low value of z < zIID at high loads shows that long waiting
times more frequently occur than for IID. The reason is that due
to the large bursts triggered under high external loads it takes
longer for the system to break a record. At low loads the waiting
time exponent z is slightly larger than the IID prediction imply-
ing an elevated frequency of short waiting times with respect to
IIDs. Note that α has different signs in the two regimes corre-
sponding to the increasing and decreasing behavior of the cutoff
of the distribution with increasing load. An independent test of
the load dependence of the cutoff waiting time 〈mmax〉 is shown
in Figure 2C, where mmax was directly averaged over the sim-
ulations. A maximum is obtained at σ∗

s in agreement with the
scaling behavior in Figures 5B,C. The flattening of the distribu-
tions p(m, σs) for low m values and the small bump close to the
cutoff observed for low loads in Figure 5C are caused by the finite
system size and by the distinct distribution of the time needed to
break the first record, respectively.

3.3. EVOLUTION OF THE SEQUENCE OF RECORDS
The creeping system approaches macroscopic failure through an
accelerating sequence of bursts of increasing size. In order to
understand how RB events occur during this evolution we eval-
uated average values of the characteristic quantities of single
records as a function of their rank k. In Figure 6A the average
record size

〈
�k

r

〉
has the same generic form for all loads, i.e., a

nearly exponential increase is obtained with a slight minimum of
the derivative of the curves for intermediate ranks. Note that for a
given value of k a record can have a higher value at low loads than
at higher ones, e.g., at k = 15 the corresponding record burst is
significantly larger at σs = 0.001 than at σs = 0.1 in spite of the
two orders of magnitude higher external load in the second case.
The reason is that for avalanche triggering the load on single fibers
is the most relevant quantity, hence, at the generation of the kth
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FIGURE 5 | (A) Probability distribution of waiting times p(m, σs) between
consecutive records for several values of the external load σs. In (B,C) the
same distributions are presented after rescaling the two axis with powers of

the external load σs separately above and below σ∗
s , respectively. The good

quality data collapse demonstrates the validity of the scaling structure
Equation (8).

FIGURE 6 | Characteristic quantities of single records: the average

value of the size
〈
�k

r

〉
(A), and relative increments

〈
δk /�k

r

〉
of record

breaking events (B). In (B) the horizontal dashed line highlights the limit
value 1. Time of occurrence 〈nk 〉 (C) and waiting time 〈mk 〉 between
consecutive records (D).

record the creeping system can be closer to catastrophic failure at
lower loads than at higher ones, which implies larger burst sizes.
In order to gain information about the rate of increase of records,
we determined the relative increments of consecutive RB events
defined as the ratio δk/�

k
r . Figure 6B shows that at the beginning

of the rupture process the average
〈
δk/�

k
r

〉
starts from a high value

simply because the first record has size �1
r = 1 and it gets typically

broken by a burst of size �2
r = 2 or �2

r = 3. Then the relative
increment rapidly decreases to the vicinity of 0.25. The remark-
able result is that for records of the highest rank

〈
δk/�

k
r

〉
tends to

1, which implies that as the system approaches macroscopic fail-
ure RBs occur by nearly doubling the size of the previous record.
Hence, not only the record sizes but also the increments form a
monotonically increasing sequence when approaching failure.

As the external load increases larger avalanches are triggered
in the system and they occur with an increasing rate [15]. Based
on this general tendency it could be expected that the average
time 〈nk〉 where the kth record appears is a decreasing function
of the external load σs. Figure 6C shows that for low load val-
ues just the opposite happens: records of a given rank k occur
later after a larger number of avalanches. The reason is that as the
load increases early records get larger, and hence, they are more
difficult to overcome. The situation changes at the characteristic
load σ∗

s so that in the range σ > σ∗
s the average record time 〈nk〉

decreases with increasing load.
The time series presented in Figure 1 does not contain infor-

mation about the physical time elapsed between events. However,
the acceleration of the system can still be inferred from the natural
time n, because the number of bursts between RB events decreases
when approaching catastrophic failure. Due to this acceleration
the average waiting time 〈mk〉 is expected to decrease between
consecutive records. It is interesting to note that for higher loads
the decreasing branch of 〈mk〉 is preceded by a rapidly increas-
ing regime indicating the slow down of RB before acceleration
sets on. The maximum of 〈mk〉 already develops for the lowest
loads with the position k∗ = 2 and it gradually shifts to k∗ = 13
for the highest ones. Comparing Figures 6B,D it can be seen that
the record rank k∗ of the maximum of 〈mk〉 falls close to the
position of the minimum of the relative increments

〈
δk/�

k
r

〉
. The

result demonstrates the emergence of a characteristic time scale
nk∗ of the system which separates slow down and acceleration of
the dynamics of RB. This is also in agreement with the behavior of
record numbers in Figure 3A so that nk∗ approximately coincides
with the onset time of the exponential increase of 〈Nn〉.
4. DISCUSSION
We investigated the statistics of records in a sequence of crackling
avalanches which occur during the creep rupture of heteroge-
neous materials. Synthetic sequences of bursts were generated
by computer simulations of a realistic fiber bundle model FBM
where slowly developing damage triggers avalanches of immedi-
ate breaking of fibers. The bundle is subject to a constant external
load below the fracture strength of the system. We analyzed the
mean field limit of the model where all fibers keep the same
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load so that no spatial correlation develops between local failure
events.

Record events are defined solely based on the burst size, i.e.,
a record is a bursts whose size is larger than that of all previ-
ous bursts. This way a monotonically increasing sub-sequence of
crackling events is identified. Computer simulations revealed that
during the evolution of the rupture process the average number of
records increases logarithmically with the number of avalanches
except for the close vicinity of macroscopic failure where an
exponential form is evidenced. Additionally, the total number
of records obtained up to failure at different load values has a
Gaussian distribution. These findings are in agreement with the
robust analytic predictions on the RB statistics of sequences of
IID random variables which shows that the beginning of the creep
process is mainly controlled by the quenched disorder of the sys-
tem. The enhanced triggering close to failure due to the rapidly
increasing load on single fibers is responsible for the exponential
acceleration of record numbers.

The size of records proved to have a power law distribution
with an exponent 1.33 significantly lower than the usual mean
field exponents 5/2 and 3/2 of the burst sizes of FBMs. The size
increments between consecutive records are found to have the
same scaling structure and the value of exponents as the record
size. To prove the independence of the exponents on the external
load a careful data collapse analysis was performed. The prob-
ability distribution of waiting times between consecutive events
has also a power law functional form, however, with different
exponents below and above the characteristic load σ∗

s . In order
to characterize the evolution of the sequence of records we stud-
ied the average value of the relative increment and of the waiting
time between consecutive events as a function of the record rank.
Both quantities show the emergence of a load dependent charac-
teristic scale in the system: at the beginning a slow down of RB
occurs with an increasing waiting time and decreasing relative
increment. Beyond a characteristic record rank k∗ the approach
to failure results in an acceleration of RB with decreasing waiting
times and increasing relative increments. In our study the disor-
der of materials was represented by uniformly distributed failure
thresholds. We repeated the complete RB analysis for Weibull
distributed disorder varying the Weibull exponent. It has to be
emphasized that the qualitative behavior of the results and the
value of the exponents of the record size, increment and waiting
time distributions all proved to be universal, only the characteris-
tic load σ∗

s , furthermore, the scaling and cutoff exponents α and
β depend on the disorder.

Recently, the RB statistics of driven threshold models of
complex systems has been analyzed in [21]. These are cellular
automata models of self organized criticality where the slow exter-
nal driving leads to the emergence of a steady state characterized
by intermittent avalanches of relaxation events. Comparing the
statistics of records of the models to the corresponding results
of IIDs the authors could point out correlations in the complex
spatio-temporal evolution of avalanches. The most prominent
deviation from IIDs was found for the Olami-Feder-Christensen
model [33] where the number of records proved to increase as
a power of the logarithm of the avalanche number. The main
difference of the dynamics of our FBM and the above models is

that during creep both the size and the rate of avalanches increase
so that no steady state arises. Hence, the comparison to IIDs in
our case helped to determine regimes controlled either by dis-
order or by the increasing stress level of intact fibers. Record
breaking statistics of inter-event times in aftershock sequences of
earthquakes has recently been studied in [19]. Based on the non-
homogeneous Poissonian process describing the rate of events, a
power law behavior of the record number was obtained following
the logarithmic increase. Our study demonstrates that the inves-
tigation of the RB statistics of the time series of crackling events
reveals also interesting novel aspects of rupture phenomena.
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