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Effect of disorder on temporal fluctuations in drying-induced cracking
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We investigate by means of computer simulations the effect of structural disorder on the statistics of cracking
for a thin layer of material under uniform and isotropic drying. For this purpose, the layer is discretized into a
triangular lattice of springs with a slightly randomized arrangement. The drying process is captured by reducing
the natural length of all springs by the same factor, and the amount of quenched disorder is controlled by varying
the width ξ of the distribution of the random breaking thresholds for the springs. Once a spring breaks, the
redistribution of the load may trigger an avalanche of breaks, not necessarily as part of the same crack. Our
computer simulations revealed that the system exhibits a phase transition with the amount of disorder as control
parameter: at low disorders, the breaking process is dominated by a macroscopic crack at the beginning, and
the size distribution of the subsequent breaking avalanches shows an exponential form. At high disorders, the
fracturing proceeds in small-sized avalanches with an exponential distribution, generating a large number of
microcracks, which eventually merge and break the layer. Between both phases, a sharp transition occurs at a
critical amount of disorder ξc = 0.40 ± 0.01, where the avalanche size distribution becomes a power law with
exponent τ = 2.6 ± 0.08, in agreement with the mean-field value τ = 5/2 of the fiber bundle model. Moreover,
good quality data collapses from the finite-size scaling analysis show that the average value of the largest burst
〈�max〉 can be identified as the order parameter, with β/ν = 1.4 and 1/ν � 1.0, and that the average ratio
〈m2/m1〉 of the second m2 and first moments m1 of the avalanche size distribution shows similar behavior to the
susceptibility of a continuous transition, with γ /ν = 1, 1/ν � 0.9. These results suggest that the disorder-induced
transition of the breakup of thin layers is analogous to a continuous phase transition.
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I. INTRODUCTION

Desiccation-induced cracking of a thin layer of materials
is an interesting scientific problem with a broad spectrum of
technological applications. Painted surfaces, thin wood layers,
antireflective and UV-protecting coatings on glasses, and thin-
film manufacturing processes such as chemical-bath and sol-
gel depositions are just a few of a large set of examples where
desiccation-induced cracks might be avoided. In contrast with
fractures induced by collisions or tensile stresses, drying of
a thin-layer material is a homogeneous and isotropic process
occurring everywhere inside the layer, the statistical behavior
of which could be different from those previously studied
cases.

During the past decades, experiments have revealed that
the competition of crack formation inside the layer with the
delamination from the substrate leads to a gradual breakup
into pieces of polygonal shapes, the characteristic length scale
of which is determined by the layer’s thickness. Recently,
Nakahara and Matsuo addressed the possibility of controlling
the structure and time evolution of crack patterns in pastes,
i.e., dense colloidal suspensions, by subjecting the paste to
vibration or flow before the onset of drying [1–3]. Detailed
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experiments showed that those mechanical excitations induce
structural rearrangements and plastic deformations getting im-
printed onto the patterns of the drying crack network. A large
number of experiments have been performed to understand
the microscopic mechanism leading to this memory effect.
They conclude that the interaction (attractive or repulsive)
among the colloidal particles and the amount of disorder (shape
regularity) govern the pattern formation [4]. A very interesting
effect of the amount of disorder has recently been pointed out in
other types of fracture processes as well. Fiber bundle models
with equal load sharing exhibit a power-law distribution of
the bursts’ sizes [5–8]. Mixing fibers with widely different
breaking strengths reveals a phase transition between two
regimes with different power-law exponents of the bursts’
distribution. The transition takes place at a well defined system
composition, and it has shown to be analogous to a continuous
phase transition [9].

In this paper, we focus on the effect of the amount of
quenched disorder on the process of gradual breakup induced
by desiccation, motivated by the works of Nakahara and
Matsuo [1–3] and Kitsunezaki [10]. The thin layer of paste
is discretized into a regular triangular lattice of springs with
fixed ends at the boundary. Drying is captured by gradually de-
creasing the natural length of all springs, inducing unbalanced
forces and leading to the final breaking of some bonds. The
quenched disorder of the material is represented by a random
distribution of the bonds’ breaking thresholds, and the amount
of disorder is given by the distribution’s width. There are
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numerous studies in the literature on the spatial arrangement of
cracks [10–15]. Hereby, we focus on the temporal evolution of
the crack by analyzing the statistics of avalanches of breaking
bonds. A quasistatic desiccation process is implemented by
shrinking all the springs by the same rate until a first bond
breaks. This induces a redistribution of loads that can be
followed by an avalanche of breaks. Simulations revealed
that the layer’s breakup proceeds in bursts, the dynamic and
statistical features of which strongly depend on the amount
of disorder: At low disorders, a dominating crack nucleates,
creating an extended free surface inside the system. As a
consequence, the size distribution of bursts is discontinuous,
i.e., small-sized avalanches have an exponential distribution,
while larger ones show a peak distribution, with a gap in
between. At high disorders, in contrast, the breakup process
consists of a large number of small-sized avalanches with
an exponential distribution. Varying the amount of disorder a
transition occurs between the two phases at a critical disorder
where the size distribution becomes a power law. Analyzing
the finite-size scaling behavior of the largest and average burst
sizes, we demonstrate that the disorder-induced transition of
our system is analogous to a continuous phase transition.

II. MODEL CONSTRUCTION

The thin layer of material to be dried is discretized into
a uniform two-dimensional triangular lattice with a slightly
distorted arrangement (as seen in Fig. 1). The nodes represent
point masses and the bonds among them provide for cohesive
forces. Nodes at the boundaries are set fixed, while internal
nodes can move in the two-dimensional plane. System size L

is defined as the number of nodes in the lower boundary row of
the lattice. Simulations were carried out for the values L = 16,
24, 30, 36, 42, and 50. The bonds are simple central force
springs, each one with a different spring constant k = El/A,
where l is the natural length of the spring, A is a uniform cross
section and E denotes for the Young modulus of the layer’s
material.

The effect of desiccation is implemented by reducing the
natural length of all springs by the same ratio. It is controlled
by an increasing parameter α, given by

α = l0 − l

l0
, (1)

where l is the current natural length of the spring and l0 denotes
its initial value, computed as the initial distance between the

σ

σ

FIG. 1. (Color online) (a) Example of initial randomized ge-
ometry. (b) Uniformly distributed breaking thresholds are centered
at C = 1 with half-width W . The amount of strength disorder is
controlled by varying the value of W between 0 and 1.

two nodes connected by the spring. Springs are assumed to
have a finite strength: When the load σ on a spring exceeds
its breaking threshold σ i

th (i = 1, . . . ,N), the spring breaks
instantaneously and it will never be restored (no healing). The
quasistatic process of a very slow drying is assured by looking
for the smaller α to break a spring.

The quenched disorder of the material is represented by the
randomness of the breaking thresholds σth. In order to be able
to vary the amount of heterogeneity in the system, we consider
a uniform distribution of threshold values centered at C = 1
with half-width 0 � W � 1 (in arbitrary units), that is, with
probability density

p(σth) = 1

2W
for C − W � σth � C + W. (2)

Hence, the strength of disorder is characterized by the
dimensionless parameter

ξ = W

C
, (3)

ranging from 0 (no disorder) to 1 (highest disorder). We note
that there is also a slight amount of structural disorder in the
system: Even though the spring lattice is almost a triangular
regular grid with spacing a, each node is randomly set inside a
circle of radius 0.1a, centered at the regular place. This slight
distortion is sufficient to prevent the formation of artificial
crack patterns, but otherwise, it does not have any relevant
role in the breakup process.

After removing a spring, the system is relaxed by numeri-
cally integrating through the Verlet algorithm the equation of
motion for each node:

m�̈ri = �Fi − c�v, i = 1, . . . ,N (4)

where a velocity-dependent damping force (with damping
coefficient c = 10 in arbitrary units) has been added to assure
for relaxation. The node mass m is proportional to the area
of the set of all points closer to this node than to the other
ones (that is, the Voronoi polygon of the dual lattice for
this geometry) [16]. In this paper, because the geometry is
close to a regular triangular lattice, m ≈ 0.86 for all internal
nodes, in arbitrary units (which in principle could be scaled
for comparison with experiment). The relaxation causes the
redistribution of the load dropped by the broken bond over the
remaining ones, leading to spatial correlations in the system.
It has to be emphasized that this force rearrangement itself
may result into subsequent breakings, as more springs surpass
their breaking thresholds while keeping their relaxed length
fixed. As a consequence, a single spring breaking induced by
drying may trigger an avalanche of breakings. The avalanche
size � is defined as the number of broken bonds during the
avalanche, including also the first one whose breaking was
provoked by the drying step. Thus, cracks, defined as clusters
of contiguous broken bonds, appear. Due to the long-range load
redistribution, a single avalanche can generate several cracks,
and it is also possible that several independent avalanches
contribute to a given crack.

In the framework of the model, the desiccation is treated
as a stepwise process, with an avalanche at the end of each
step. The time t is just defined as number of steps (that is,
the number of avalanches that occurred). During drying, the
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amount of shrinkage is characterized by the relative length
reduction α = �l/l0 of spring elements, so that we use α as the
degree of desiccation. The initial value of α at the beginning of
the loading process is α0 = 0. At each time step t , α advances
to the next minimum value that will cause a breaking. So, the
increase in α is different for each time step. The minimum
α to generate an avalanche is found throughout a bisection
method; this avoids the possibility of overshooting. The drying
process ends when the humidity content on the sample drops
to 0. We consider this to be equivalent to a finite value of the
shrinkage parameter αf , which in the present model is set to
the arbitrary value of αf = 0.3. Summarizing, there are two
variables to follow the drying evolution: the number of steps t

(a discrete one), and the degree of desiccation α (a continuous
one). A large amount of computer simulations were performed
in order to understand the effect of the strength of disorder on
the breakup process of thin layers of heterogeneous materials.
Specifically, N = 1000 for L = 16, 24, and 30, N = 800 for
L = 36, N = 500 for L = 42, and N = 50 for L = 50 systems
were generated for each value of the amount of disorder ξ by
changing the seed of the random number generator.

In this paper, we focus on the effect of the amount of
disorder on the statistics of avalanches.

III. BREAKUP PROCESS

As explained before, the desiccation-induced breakup of
our discrete model is not a smooth process, but evolves
in bursts (avalanches). The desiccation parameter α grows
until a single spring breaks, triggering the burst and leading
to load redistributions and additional rearrangements that
eventually break more springs. The burst stops when no more
springs break with that desiccation factor. Both these temporal
fluctuations of the bursting activity and the emerging crack
structure are strongly affected by the degree of disorder in the
system. To give a quantitative characterization of the effect of
disorder on the breakup process, simulations were carried out
by varying the value of ξ in a broad range.

Large avalanches consist of spatially correlated bonds being
broken, even though not necessarily as a single expanding
crack of contiguous bonds. Such spatial correlation takes place
at the beginning of the breaking process for low amounts of
disorder in the distribution of breaking thresholds, where large
avalanches appear early on (as seen in Fig. 2), due to stress
accumulations. Conversely, large amounts of disorder do not
generate correlated crack growths during the early stages of the
evolution. The initial breakings tend to be random, scattered
all over the lattice, with small avalanches of size � � 1.

FIG. 2. (Color online) First large avalanche for three different
widths of disorder, showing how the narrower breaking distributions
favor the appearance of large fractures. (a) ξ = 0.01, (b) ξ = 0.1, (c).
ξ = 0.3 [17].

FIG. 3. (Color online) The relative length reduction 〈α〉 of springs
as a function of time for several values of the amount of disorder ξ .
The system size was set to L = 30. Data values are binned with a bin
size �t = 1 and 16 for 0 < t < 10 and for t > 10, respectively.

Only after a fraction of bonds breaks and small microcracks
have appeared in the system, these microcracks can coalesce
by means of gapping cracks, which are clusters of broken
bonds joining two microcracks. As drying continues, both
for small and large disorder, the newly created free surfaces
hinder the appearance of large avalanches by relaxing the
stress in the remaining intact parts of the spring network.
The overall shape of cracks is similar to what has been
observed for drying processes in composite materials, where
the disorder comes from random distributions of the three types
of bonds representing the interaction between the ingredients
of a composite (see [11–13]).

To follow the time evolution of the process, we evaluated
the average value of the desiccation parameter 〈α〉 as a function
of time t . It is important to emphasize that the curves of 〈α〉(t)
presented for several values of ξ in Fig. 3 have two distinct
regimes: At the beginning of the drying process, the value
of 〈α〉 remains nearly constant over two orders of magnitude
in time, which implies a large number of shrinking steps with
tiny length changes δα � 1. This slow regime is then followed
by a sudden acceleration of the process where springs suffer
a considerable length reduction. The reason of the crossover
from slow to rapid shrinkage is the formation of a dominating
crack spanning the system in one or both directions. Due to
the large free surface inside the lattice, a larger reduction in
the length of all springs is required to trigger the next breaking
event. The analysis of the spatial structure of damage shows
that the transition point can be identified as the exact time
when the spanning crack appears. This occurs for all levels
of disorder ξ ; nevertheless, the geometrical structure strongly
depends on the precise value of ξ .

It can be seen in Fig. 3 that the curves of 〈α〉(t) shift to the
right with increasing values of ξ . It means that the the total
duration tf of the process, i.e., the total number of shrinkage
steps required to reach some value αf , is an increasing function
of the amount of disorder, as illustrated in Fig. 4.

In other words, the process slows down with increasing
disorder, i.e., a larger number of smaller steps are required
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FIG. 4. (Color online) Average number of steps tf needed to reach
the shrinkage value of αf = 0.7, for different values of the disorder
ξ , for a system of size L = 30.

to drive the fracture process. It can be observed in Fig. 4
that the monotonically increasing tf curve has a curvature
change around ξc ≈ 0.5, where the slope of the function has a
maximum. Looking at the rate of change, the system seems to
have two phases depending on the amount of disorder: a rapidly
evolving low disorder phase and a slowly proceeding high
disorder one, separated by the inflection point. Both quantities
we have considered until now are global characteristics of
the lattice breaking process. In the following, we analyze
the statistical features of the individual avalanches of spring
breakings.

IV. AVALANCHE DYNAMICS

Let us start by analyzing �, defined as the average size
of avalanches decreased by the minimum avalanche size
�min = 1 as a function of α.

It can be observed in Fig. 5 that, for systems with very high
disorder, �(α) jumps discontinuously from zero to an isolated
maximum, which in turn is orders of magnitude larger than the
average of the function over the whole loading process. This
corresponds to a large initial avalanche, caused by the release
of the strain accumulation in the system. The height of this
maximum decreases with increasing disorder and disappears
for ξ ≈ 0.7, where �(α) becomes a monotonically decreasing
function. This is in agreement with previous results on the
geometrical structure of the crack patterns, showing that, for
large disorders, the largest crack appears by coalescence, not
by a single large avalanche [11,12]. Also, notice that, for
smaller amounts of disorder (for ξ � 0.6), a local maximum
appears. This implies that the large initial crack does not
completely undermine the appearance of large avalanches;
rather, some new cracks can appear at this second value of
shrinkage. It is interesting to note that in Fig. 5 straight lines
are obtained on a semilogarithmic plot, evidencing that, for
large α values, �(α) shows an exponential decay

� ≈ e−Aα (5)

FIG. 5. (Color online) Arithmetic average of avalanche sizes
�(α) as function of the shrinkage α for different values of disorder
ξ . Each curve is the average over several instances of the system.
Inset: For very high disorders (for example, ξ = 1.0), there is a
single maximum, corresponding to a single large avalanche, just at
the start. This first maximum disappears close to the transition value
of disorder ξc = 0.6 and, thereafter, a second local maximum appears.
For all cases, there is an exponential relationship between � and α at
the end of the process.

for all amounts of disorder. The multiplication factor A is
practically independent of the value of ξ .

The distribution of avalanche sizes N (�), proportional
to the probability distribution of avalanche sizes P (�), is
presented in Fig. 6 for several values of the amount of disorder
ξ . It can be observed that, for small disorders, the distribution
P (�) clearly separates into two distinct regimes with different
functional forms: For small-sized avalanches (say, � < 10),
the distribution P shows an exponential decay, while for larger
ones, it shows a well defined peak, corresponding to a single
major avalanche at the beginning of the drying (depicted in

FIG. 6. (Color online) Avalanche size distributions N (�) ∝
P (�) for a system of linear extension L = 30, for several values
of disorder ξ . Inset: Avalanche size distribution at the critical point
ξc, where a good quality power law is obtained.
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Fig. 2). This rapid exponential decay of small-sized avalanches
is due to the appearance of a large dominating crack of
almost the same as the linear extension of the system, which
creates a free surface that allows for the relaxation of stresses.
The drying process later on can not generate long breaking
sequences since nodes can easily rearrange to compensate for
unbalanced forces. At high amount of disorder, in contrast, the
presence of strong springs prevents the formation of a domi-
nating crack at the onset of breaking. The breakup proceeds in
short avalanches resulting in a large number of small-sized
cracks, which eventually merge and relax all unbalanced
forces. Consequently, the distribution of avalanche sizes P (�)
spans again a limited range and exhibits an exponential
decay.

These two different behaviors define the two phases of the
system: a first isolated large crack phase, where the fracture
growth is dominated by the appearance of a macroscopic crack
at the beginning of the process, almost spanning across the
sample; and a second coalescence phase, where the large
fracture is formed by merging small cracks at the end of the
breakup process. The transition between the two phases is
controlled by the amount of disorder in the system. At the
critical value ξc = 0.40 + ±0.01, the probability distribution
becomes a power law

P (�) ∼ �−τ , (6)

with no characteristic length scale (see the inset of Fig. 6).
The value of the exponent τ was determined numerically as
τ = 2.6 ± 0.08. It is interesting to note that this value falls
very close to the mean-field exponent τ = 5/2 of fiber bundles
[6,7,18], supporting the idea that the statistics of avalanches
in drying-induced cracking is dominated by the long-range
nature of the load redistributions.

In order to understand the nature of this disorder-induced
transition, we computed the average value of the largest burst
〈�max〉, which can be considered as the order parameter of the

FIG. 7. (Color online) Arithmetic average of the largest
avalanche, for different system sizes, as a function of the disorder
of the system ξ . The different data curves collapse in a single shape
when the transformation is applied, implying ξc = 0.4, β/ν = 1.4,
and 1/ν = 1. Inset: Original data without rescaling.

FIG. 8. (Color online) Arithmetic average of the largest 〈�max〉
and second largest 〈�2nd

max〉 avalanches for different system sizes, as a
function of the disorder ξ .

transition. Indeed, it can be observed in Fig. 7 that 〈�max〉 is a
monotonically decreasing function of the amount of disorder
ξ , with an inflection point at the transition (ξc ≈ 0.6 for the
system size L = 48). Increasing the system size L shifts
the curves of 〈�max〉 toward higher disorder values, but the
functional form remains the same. Actually, Fig. 7 shows that
all curves for different system sizes L can be collapsed onto
a universal master curve by appropriately rescaling both axes
on the plot. The good quality data collapse implies the scaling
structure

〈�max〉(L,ξ ) = Lβ/νf [(ξ − ξc)L1/ν], (7)

where the values of the critical exponents were obtained
numerically as β/ν = 1.4 and 1/ν = 1.0 in agreement to the
value of ν obtained theoretically for the quasistatic damage
models in the regime of small damage [19].

Figure 8 compares the average of the largest 〈�max〉 and
second largest 〈�2nd

max〉 bursts. It can be observed that, below
the critical point ξ < ξc, the size of the largest avalanche is
a finite fraction of the total number of bonds in the lattice,
while the second largest burst is orders of magnitude smaller;
in contrast, in the high-disorder regime ξ > ξc, the largest and
second largest bursts are similar and decrease together as ξ

increases. Based on this behavior, let us define the average
burst size 〈�〉 as the average value of the ratio of the second
m2 and first moments m1 of the avalanche size distribution [20]

〈�〉 =
〈
m2

m1

〉
, (8)

where the kth moment of the burst sizes is defined as

mk =
K∑

i=1

�k − �k
max. (9)

When plotted against ξ , this average burst size exhibits the
remarkable feature of showing a maximum at the same critical
disorder ξc obtained in the previous analysis of the largest
bursts (Fig. 9). Both results demonstrate that the interplay
between strength disorder and stress inhomogeneities around
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FIG. 9. (Color online) Scaling plot of the average avalanche size
〈m2/m1〉. By rescaling the two axes with appropriate powers of L, all
curves obtained for different L values collapse on the top of each other
for γ /ν = 1, 1/ν = 0.9, and ξc = 0.4. The inset shows the original
data before rescaling.

cracks leads to the emergence of a critical state of the system
where the bursting activity becomes scale free. Note that in
the evaluation of the average burst size 〈�〉, the largest burst
is always omitted; thus, the maximum in Fig. 9 implies that
the characteristic avalanche size becomes comparable to the
system size at the critical disorder.

By increasing the system size L, the maximum of the
average burst size 〈�〉 gets sharper, i.e., it becomes a higher
and narrower peak. Based on the analogy to phase transitions,
we tested the validity of the scaling form

〈�〉(L,ξ ) = Lγ/νg[(ξ − ξc)L1/ν], (10)

where g(x) denotes a universal scaling function. It can be
observed in Eq. (10) that this scaling law allows for a data
collapse of very good quality. The values of the exponents were
obtained as γ /ν = 1 and 1/ν = 0.9. It has to be emphasized
that these values of ξc and 1/ν are consistent with those
obtained from the scaling analysis of the largest burst 〈�max〉.

V. DISCUSSION

We carried out a theoretical investigation of the desiccation-
induced fracture of a thin layer of a heterogeneous material.
Previously, a large variety of experiments and computational
modeling have shown that the crack patterns in such a system
strongly depend on the amount of disorder of the material.
In this paper, we focused on the temporal evolution of the
fracture process by analyzing the statistics of avalanches
of microfractures varying the amount of disorder. For this
purpose, a triangular lattice of spring elements was introduced
where drying was captured by gradually decreasing the natural
length of all springs. The quenched disorder of the material
was represented by the random breaking thresholds of springs.
The threshold values were uniformly distributed such that the
amount of disorder could be controlled by varying the width
of the distribution. The model was investigated by carrying

out extensive computer simulations for several amounts of
disorder in a broad range of system sizes.

As the most remarkable outcome, our study revealed that,
behind the formation of crack patterns induced by drying,
there is an interesting bursting activity of breakings. These
bursts are sudden avalanches of fractures, induced by the
breaking of a single material element. Simulations showed
that the amount of disorder has a very strong effect on the
statistics of avalanches: At low disorders, few large avalanches
at the beginning of the drying create a large free surface in
the system, and thereafter only small-sized avalanches can
emerge. The large avalanches are comparable to the size of
the system and they distribute like a peak around a mean
size, while the small ones show an exponential distribution
of sizes. In the opposite limit of high disorder, the entire
breakup of the layer proceeds in small-sized bursts with an
exponential distribution of sizes. Between the high and low
disorder phases, a sharp transition occurs at a critical amount
of disorder of ξc = 0.40 + ±0.01, where the avalanche size
distribution becomes a power law. The exponent of this power
law is τ = 2.6 ± 0.08, in agreement with the mean-field value
τ = 5/2 of the fiber bundle model.

To obtain a deeper understanding of this disorder-induced
transition, we investigated the average size of the largest and
second largest bursts as a function of disorder and performed a
finite-size scaling analysis of the results. Actually, the average
value of the largest burst 〈�max〉 can be identified as the
order parameter, and a good quality finite-size scaling gives
β/ν = 1.4 and 1/ν = 1.0 for the critical exponents. Similarly,
the average ratio 〈m2/m1〉 of the second m2 and first moments
m1 of the avalanche size distribution shows a maximum
at the same critical disorder ξc = 0.4, and the finite-size
scaling reaches the collapse of all curves for different system
sizes L with γ /ν = 1, 1/ν = 0.9. These critical exponents
characterize the transition.

We note that, in real systems, the drying process might not
be quasistatic, i.e., avalanches might be triggered by more
than one microfracture, which also affects the statistic of
avalanches. Recently, it has been shown analytically in the
framework of fiber bundles that, compared to the quasistatic
limit, the power-law exponent of the burst size distribution gets
higher when the system is driven with finite load increments
[6,21]. A similar change of the burst size exponent can be
expected when increasing the drying rate of the desiccation
process.

Desiccation-induced cracking of pastes is a good candidate
for a possible experimental realization of our theoretical
findings. It has been shown recently in several experiments
[2,10] that pastes offer several opportunities to control the
amount of disorder in the drying material: By varying the
composition of the system (for instance, by mixing two
different materials such as polymers and clay, as in Ref. [10]),
a quenched structural disorder of local strength values can
be introduced. Another possibility is to consider a single
component paste, but varying the size distribution of particles
in the colloidal suspension (as in [2]). Both methods might
be used to prepare samples with several amounts of quenched
disorder, and high-speed imaging techniques could be used to
monitor the avalanches by analyzing the temporal fluctuations
of the crack pattern, as in [22,23]. This experimental setup
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would contrast our results for the order parameter, the critical
exponents, and the phase transition itself.
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