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Attraction-driven aggregation of dipolar particles in an external magnetic field

Gergő Pál,1 Ferenc Kun,1,2 Imre Varga,1 Dóra Sohler,2 and Gang Sun3
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We present a detailed experimental study of the aggregation of particles of permanent magnetic moment in an
external magnetic field. The experiments are performed with millimeter-sized particles floating on the surface of
water. Due to the large size of the particles, thermal noise does not have any relevance in the system; the particles
undergo deterministic motion. Experiments are carried out varying the concentration which also controls the
relative importance of the dipole-external field and the dipole-dipole interactions. We determined the exponents
characterizing the aggregation process and found that the attraction driven aggregation of dipolar particles obeys
the Vicsek-Family dynamic scaling. The exponents are found to have a concentration dependence which can be
attributed to the change of mobility of clusters and their interaction at higher concentrations.
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I. INTRODUCTION

Structure formation of magnetic particle systems due to
self-assembly plays a crucial role in a wide range of phe-
nomena from dipolar colloidal fluids to magnetized granular
materials [1]. In a monolayer of dipolar particles the long-range
anisotropic interaction and the inherent frustration of the
system give rise to very interesting phenomena where the
particles self-assemble into various types of structures [2–4].
The presence of such aggregates has a strong effect on the
statistical thermodynamic [3,5,6], optical [7], and rheological
properties [8,9] of these systems, which calls for a detailed
understanding of the process of aggregation.

Depending on the size scale of particles several experi-
mental techniques have been used to investigate the kinetic,
dynamic, and statistical thermodynamic features of dipolar
particle systems: Cryogenic transmission electron microscopy
was used to investigate colloidal dispersions of single domain
magnetites [4,10]. In the micrometer range monolayers of
dipolar particles have been realized by confining particles or
holes on the surface of a liquid, in the interface of two fluid
layers [11–13], or to the bottom of a fluid container [14,15].
Experiments revealed that the particle system undergoes a
cluster-cluster aggregation process which results in chains or
more complex branching structures depending on the particle
concentration and on the presence or absence of an external
magnetic field [16,17]. Using an external magnetic field with
appropriate orientation various types of crystal structures
can also be achieved in magnetic dipolar monolayers [12].
At higher length scales, centimeter sized magnetic particles
provide interesting granular assemblies, where, using vibroflu-
idization techniques, aggregation phenomena and the phase
structure of granular fluids-gases can be investigated [18–21].
Using centimeter sized steel balls of permanent magnetic
moments the effect of long range anisotropic forces on the
angle of repose and avalanche dynamics of granular materials
have been studied [22]. The large particle size in these
experimental studies offers several advantages; however, it
implies some additional difficulties to overcome the frictional
barrier. In these cases usually vibrating tables are used to

mobilize the particles tuning the frequency and amplitude of
the excitations [14,18–21].

In the present paper we investigate the aggregation of
macroscopic particles of permanent magnetic dipole moment
confined in a plane. In order to decrease the frictional barrier,
the particles float on the surface of water in such a way that
their dipole moment always falls in the plane of motion. This
technique ensures that the translational and rotational motion
of the particles is only affected by the Stokes drag force and
torque exerted by the liquid [23]. The main advantage of the
experimental setup is that using direct optical observations all
single particles can be tracked and even the orientation of their
dipole moment can be determined any time during the time
evolution. Due to the large size of the particles the thermal
motion does not play any role in the system. Varying the
concentration in a broad range we investigate the dynamics
of the aggregation process. Experiments revealed that the
attraction driven aggregation of dipolar particles obeys the
Vicsek-Family dynamic scaling similarly to diffusion domi-
nated aggregation of dipoles [11,16]. The dynamic exponents
have a concentration dependence, which can be attributed to
the change of the mobility of clusters with their size and to
the change of the interaction of clusters as the concentration
increases.

II. EXPERIMENTAL SETUP

In the experiments millimeter sized metal cylinders magne-
tized along their axis are attached to swimmers. The cylinders
are NdFeB magnets provided by BorsMagnet [24] having a
remanence of 1.1 T. The diameter and height of the metal
cylinder are dm = 2 mm and hm = 10 mm, respectively. The
swimmers are cork disks of diameter ds = 25 mm and height
hs = 5 mm which is sufficient to stabilize the particle on
the water surface. The composite particles can swim on the
top of water which facilitates the translational and rotational
motion. A detailed experimental investigation of the motion
of composite particles on the surface of water was carried out
in Ref. [23]. It was shown that the motion can be described by
taking into account the interaction of pointlike dipoles and by
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FIG. 1. (Color online) Composite particles used in the experi-
ments. Metal cylinders magnetized along their axis are attached to
cork disks which can then float on the surface of water. The top of
the disk is colored blue on which the white and yellow spots indicate
the orientation of the vector of the dipole moment.

the Stokes drag force exerted by the fluid. The typical magnetic
force between two particles was found to be more than an
order of magnitude larger than the drag force [23]. In order to
facilitate the image processing and particle tracking, the top
of the particles is colored to blue on which white and yellow
spots indicate the orientation of the dipole vector. Figure 1
presents the construction of the composite particles and the
coloring. The experiments are carried out in a square-shaped
water container of size L = 100 cm and height 5 cm. In order
to fully control the initial state of the particle system, a hard
plastic net with a wooden frame is put into the container
which floats on the water surface. The initial configuration
of the system is prepared in such a way that the particles
are placed on the top of the net with random position and
random direction of the dipole moments. The particles start to
move at the same time when the net is immersed into the water
letting the particles float. We have used a former version of this
experimental technique to investigate the pattern formation in
binary colloidal monolayers [23,25].

The floating particles undergo translational and rotational
motion due to the anisotropic dipole-dipole interaction and
due to the action of the homogeneous external magnetic field
of Earth. At low concentrations, as soon as the particles
become free to move, they rotate and get aligned with the
Earth magnetic field. Increasing the concentration, however,
the local dipole field of the interacting particles can overcome
the external field strength, resulting in an interesting change
in the dynamics and structure of the system. The particle
concentration φ is defined as the coverage, that is,

φ = NR2π/L2, (1)

where R = ds/2 denotes the radius of cork disks and N is
the total number of composite particles. The investigation of
the dynamics of the aggregation process was carried out in
the range φ � 0.16, where φ was controlled by varying the
number of particles N = 50,100,150,200,250,300. At each
concentration measurements were repeated 30 times recording
them by a digital video camera with a frame rate 15 frames/s.
The relatively large particle size and the high resolution of
the camera let us fully automatize the image analysis. All
single particles are tracked frame by frame determining also
the vector of the dipole moment. We note that above the upper

(c)t = 60 sec (f)t = 60 sec

(b)t = 6 sec (e)t = 6 sec

(a)t = 0 sec (d)t = 0 sec

FIG. 2. (Color online) Time evolution of the particle system at
two different concentrations φ = 0.0265 (a),(b),(c) and φ = 0.1060
(d),(e),(f). Cluster-cluster aggregation can be observed where the
structure of aggregates strongly depends on the concentration of the
system.

limit of our concentration the system rapidly forms a single
connected cluster. During this rapid aggregation process it
might also occur that more than two clusters merge nearly at
the same time, which could only be resolved with a high-speed
camera.

Examples of the time evolution of the particle system can be
seen in Fig. 2 for two different concentrations φ = 0.0265 and
φ = 0.1060. It can be observed that the system evolves through
cluster-cluster aggregation; that is, particles first aggregate
and form dimers then trimers which subsequently merge into
larger and larger clusters. The system always converges to a
nearly frozen state where the time scale of changes becomes
very large. The figures also illustrate that the structure of
the aggregates strongly depends on the concentration: At low
concentration [Figs. 2(a)–2(c)] initially the particles are far
enough from each other so that the external magnetic field of
Earth dominates the system. It has the consequence that the
particles first align with the external field and then aggregate
into parallel chains. However, increasing the concentration φ

the local dipole field can overcome the external field, resulting

061504-2



ATTRACTION-DRIVEN AGGREGATION OF DIPOLAR . . . PHYSICAL REVIEW E 83, 061504 (2011)

in bent chains and branched aggregates which then merge
into a single connected cluster with a complex topology
[see Figs. 2(d)–2(f)]. We developed a computer code which
analyzes all snapshots of the videos, determining the position
of the center of particles and also the direction of the vector
of dipole moments. Based on the particle positions, clusters
can easily be identified as connected sets of touching particles.
The size of clusters S is defined as the number of particles
involved. It is a very important feature of our system that the
particles undergo deterministic motion due to the dipole-dipole
interaction. The large particle size ensures that thermal noise
cannot have any role in the process. The experimental tech-
nique lets us investigate the interaction driven cluster-cluster
aggregation of dipolar particles, where the relative importance
of the external field and of the dipole-dipole interaction
can be controlled by the concentration. In the following we
present quantitative results obtained by the image processing
technique.

III. DYNAMICS OF AGGREGATION

The dynamics of the aggregation process can be charac-
terized by studying the cluster size distribution nS(t) which
provides the average number of clusters of size S at time t .
In a given sample the average cluster size 〈S〉 and the average
number of clusters 〈n〉 as a function of time can be obtained
from nS(t) as

〈S〉(t) =
∑

S nS(t)S2∑
S nS(t)S

and 〈n〉 (t) =
∑

S

nS(t), (2)

which are then averaged over samples of different random
initial conditions. The results of the data evaluation are
presented in Figs. 3 and 4 for the average size and number of
clusters, respectively. Note the smoothness of the experimental
curves which is due to the high resolution data evaluation
and to averaging over a large number of samples. It can
be observed in Fig. 3 that 〈S〉(t) monotonically increases at
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FIG. 3. (Color online) Average cluster size 〈S〉 as a function of
time t for all the concentrations considered (the value of φ increases
from bottom to top at small values of t). At the time of saturation the
aggregation process slows down and the configuration gets practically
frozen. For intermediate times the functional form of 〈S〉 can be well
approximated by power laws which are indicated by the straight lines.
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FIG. 4. (Color online) Average number of clusters 〈n〉 as a
function of time t for all the concentrations considered (the value of
φ increases from bottom to top at small values of t). At intermediate
times good quality power law fits can be obtained.

all concentrations and saturates for large times due to the
finite size of the system. The average number of clusters
〈n〉 in Fig. 4 monotonically decreases with time and exhibits
the same saturation as 〈S〉 for large t . At low concentration
when saturation occurs the growing clusters become so distant
that no significant movement can be observed over long
durations [see Figs. 2(a)–2(c)]. However, at high concentration
saturation is the consequence of the formation of a single
connected cluster which gets nearly frozen [see Figs. 2(d)–
2(f)]. The absence of thermal noise enables the particle system
to get trapped in these metastable configurations. It can be seen
that for intermediate times both 〈S〉(t) and 〈n〉(t) can be well
approximated by straight lines; that is, they exhibit power law
behavior,

〈S〉(t) ∼ tZ, 〈n〉(t) ∼ t−Z′
, (3)

where the dynamic exponents Z and Z′ are important charac-
teristic quantities of the system. It is also evident in Figs. 3 and
4 that both exponents depend on the concentration such that
they both increase with increasing φ. The numerical values of
Z and Z′ obtained by fitting are summarized in Fig. 5 as a
function of the concentration.

For the cluster size distribution nS(t) the Vicsek-Family
scaling theory of kinetic aggregation predicts the functional
form

nS(t) ∼ t−wS−τ f

(
S

S∗(t)

)
, (4)

where S∗(t) is the typical cluster size and f is a cutoff function
[26,27]. According to the theory, if τ < 1 then 〈S〉(t) ∼ S∗(t)
and 〈n〉(t) ∼ [S∗(t)]−1 hold, and, hence, the equality Z = Z′
follows. The scaling form Eq. (4) provides a good description
for diffusion limited cluster-cluster aggregation phenomena
[27]. Recently, the scaling relation Eq. (4) has also been found
to be valid for magnetic holes aggregating in an external
field, when the hole size was sufficiently small [11] making
thermal motion possible. In our case τ < 1 can be verified
and, as expected, in the low concentration regime of Fig. 5
the exponents Z and Z′ agree very well. Larger deviations are
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FIG. 5. (Color online) Dynamic exponents characterizing the
attraction driven aggregation of dipolar particles as a function of
concentration φ. For clarity, error bars are only shown for the exponent
w. For comparison, we also show the product of the exponents Z�

which should be compared to the value of w. It can be observed that
the exponents fulfill the scaling relation Eq. (6).

only observed for higher concentrations. We emphasize that
in our system the motion of particles is fully deterministic;
thermal noise or diffusive motion cannot play any role. The
experimental data show that the equality of Z and Z′ remains
valid for attraction driven aggregation of in-plane dipoles as
well.

It follows from the scaling relation Eq. (4) that for a
fixed cluster size S the number or concentration of clusters
should asymptotically decay as a power law nS(t) ∼ t−w

with the exponent w [26,27]. The very good statistics of our
experimental data enables us to determine the value of w with
a reasonable accuracy. Figure 6 presents nS(t) for S values up
to 8 as a function of time for four different concentrations.
As a reference we always plot the average value of the total
number of clusters 〈n〉 as well. As expected, nS=1(t) decreases
monotonically; however, for all cluster sizes larger than S = 1
the nS(t) curves have a maximum since these clusters are
created by the merging of smaller ones. The decreasing part of
the curves emerges due to the disappearance of clusters as they
join other ones giving rise to larger clusters. In the decreasing
regime in all cases the curves can be well approximated by
power laws from which we numerically obtained w. The values
of the exponent w for the different concentrations are presented
in Fig. 5, where a weak dependence on the concentration φ

can be observed again.
The cluster size distribution nS(t) can also be written in an

alternative form,

nS(t) ∼ S−2g(S/tZ), (5)

where the scaling function g(x) has the property g(x) � 1 for
x � 1 and it has a power law form g(x) ∼ x� for x � 1
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FIG. 6. (Color online) Time evolution of the number of clusters
of a fixed size nS(t) for four different concentrations: (a) φ = 0.0796,
(b) φ = 0.1060, (c) φ = 0.1327, (d) φ = 0.1592. Power laws can be
fitted with a reasonable accuracy.

[26,27]. The exponent � of the scaling function is called
a crossover exponent. From mass conservation during the
aggregation process a relation of the scaling exponents can
be derived:

w = Z�. (6)

In order to test the validity of the scaling structure, Eqs. (5)
and (6), in Fig. 7 we plot the cluster size distribution nS(t)
multiplied by S2 as a function of the rescaled cluster size
S/〈S〉 for several time ranges. To improve the statistics the
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FIG. 7. (Color online) Data collapse analysis of the cluster
size distributions obtained at different time intervals. A reasonable
collapse of the data is obtained. The value of the crossover exponent
� was determined by fitting straight lines.
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nS(t) curves are not presented for single time values but they
are averaged over short time intervals. Note that the original
nS(t) curves are quite smooth, the larger fluctuations in Fig. 7
arise due to the multiplication by S2. The good quality collapse
of nS(t) obtained at different times supports the validity of the
functional form Eq. (5). We emphasize that in the parameter
range S/〈S〉 < 1 the data can be well described by a power law
for those time values which belong to the power law regime of
〈S〉 in Fig. 3. Fitting straight lines in Fig. 7 we determined the
value of the exponent �, which is again presented in Fig. 5 as
a function of φ. It can be observed in Fig. 5 that Z,Z′, and w

are all monotonically increasing with φ; however, for the two
highest concentration values the crossover exponent � slightly
decreases. Note that all values of the crossover exponent � are
larger than 1, which implies the relation τ = 2 − � < 1. This
is consistent with the behavior of the average cluster number
〈n〉 ∼ t−Z′

. Using the numerical values of the exponents w,
�, and Z in Fig. 5 we can verify that they fulfill the scaling
relation Eq. (6) with a precision of 0.07–0.15 depending on
the concentration.

IV. DISCUSSION

We presented an experimental study of the aggregation
of millimeter sized particles having a permanent magnetic
moment in a weak homogeneous external magnetic field. Due
to the large particle size, Brownian motion does not play
any role in the system, the particles undergo deterministic
motion driven by the mutual attraction. The particles are
magnetized to saturation so that the homogeneous magnetic
field of Earth just rotates the particles; motion occurs under the
action of the dipole-dipole force. Varying the concentration in
a broad range we analyzed the time evolution of cluster-cluster
aggregation and presented the results in the framework of
dynamic scaling theory. At each concentration, experiments
were repeated 30 times with random initial positions and
in-plane dipole directions. The well controlled conditions of
the experiments and the digital image processing enabled
us to obtain good quality results for all the quantities of
interest of the aggregation process. That the exponent w here
is directly determined from experimental data for magnetic
particle systems allowed us test the validity of the scaling
relation of dynamic exponents.

The experiments revealed that the interaction driven aggre-
gation of dipolar particles obeys the Vicsek-Family dynamic
scaling. The scaling relations of the exponents Z = Z′ and
w = Z� are fulfilled with a reasonable accuracy; deviations
increase with increasing concentration. Most of the experi-
mental studies in the literature are focused on systems where
the particle size (from nano- to micrometer) enables the
diffusive motion of the particles. Transition from diffusive to
ballistic regime is usually obtained by increasing the strength
of interaction which is controlled by the strength of the external
magnetic field. It is interesting to note that the values of
the exponents Z and Z′ at our lowest concentration (see
Fig. 5) agree well with the ones of Ref. [11] obtained for
the largest particles whose motion is mainly ballistic. The
increase of Z and Z′ with the concentration in our system
can be attributed to the change of the mobility and of the

interaction of growing clusters as the concentration increases.
In Ref. [28] an anisotropic cluster-cluster aggregation was
studied by means of computer simulations for several values
of the exponent γ that relates the mobility D to the size of
the clusters D ∼ Sγ (see also Ref. [27]). For γ = −0.5 for
the dynamic exponents Z = Z′ = 0.63/0.64 and w = 1.22
were obtained [28], which are very close to our experimental
results for the lowest density. For γ = 0 the same simulations
yielded Z = Z′ = 1 and w = 1.75, which fall very close to
the exponents we obtained experimentally at intermediate
densities (φ ≈ 0.08). This comparison demonstrates that at
low and intermediate densities the experimental results can be
interpreted as an anisotropic aggregation with a dependence of
the mobility on cluster size that is varying with concentration.
Computer simulations of isotropic cluster-cluster aggregation
in Ref. [26] provided exponents Z = 1.4 and � = 1.25, which
fall close to our measured exponents at high concentrations.
Therefore, it seems that when increasing the density the
aggregation becomes more isotropic in spite of the anisotropic
particle-particle interaction.

Studying aggregation processes of dipolar particles, it
would be interesting to consider also the effect of the system
size on the dynamic exponents. In our experimental setup it
could be achieved by decreasing the size of the composite
particles or by increasing the size of the container. By carefully
exploring all these possibilities it turned out that at smaller
sizes the composite particles cannot remain stable on the water
surface: When particles merge they may jump on the top of
each other, which would modify the outcome of the process.
The size of the container cannot be significantly increased
either because we cannot ensure that all the particles start to
move at the same time. The present setup proved to provide
reliable results; however, no size scaling could be studied.

Recently, it has been shown experimentally that the dy-
namics of the aggregation process of dipolar particles and the
resulting structure has some dependence on the shape of the
magnetic field [20]. In our case similar questions could be
addressed by varying the height of the magnetized cylinder
hc at a fixed size of the cork disk R. This way we can
tune the shape of the magnetic field of the particles from
a pointlike dipole to an extended distribution of magnetic
moments. Another interesting aspect of our experimental
system is that it allows us to investigate the structural change
of the system as the concentration is varied. Increasing
the concentration beyond the regime of kinetic aggregation,
the rapid reorganization of particles gives rise to connected
particle sets with a highly nontrivial topology. Work in these
directions is in progress.
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