
Crackling noise in sub-critical fracture of heterogeneous materials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Stat. Mech. 2009 P01021

(http://iopscience.iop.org/1742-5468/2009/01/P01021)

Download details:

The article was downloaded by: kun_ferenc

IP Address: 193.6.181.161

The article was downloaded on 28/01/2009 at 09:23

Please note that terms and conditions apply.

The Table of Contents and more related content is available

HOME | SEARCH | PACS & MSC | JOURNALS | ABOUT | CONTACT US

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1742-5468/2009/01
http://iopscience.iop.org/1742-5468/2009/01/P01021/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/pacs
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact


J.S
tat.M

ech.
(2009)

P
01021

ournal of Statistical Mechanics:
An IOP and SISSA journalJ Theory and Experiment

Crackling noise in sub-critical fracture
of heterogeneous materials

F Kun1, Z Halász1, J S Andrade Jr2,3 and H J Herrmann3

1 Department of Theoretical Physics, University of Debrecen, PO Box 5,
H-4010 Debrecen, Hungary
2 Departamento de F́ısica, Universidade Federal do Ceará, 60451-970 Fortaleza,
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Abstract. We present a theoretical study of the sub-critical fracture of
heterogeneous materials under a constant external load. A generic fiber bundle
model is proposed, which provides a direct connection between the microscopic
fracture mechanisms and the macroscopic time evolution of the sub-critical
system. In the model, material elements either fail due to immediate breaking
or undergo a damage accumulating ageing process. On the macrolevel the model
reproduces the empirical Basquin law of rupture life, and it makes it possible
to derive a generic scaling form for the deformation histories of different load
values. On the microlevel we found that sub-critical fracture is accompanied
by crackling noise, i.e. the competition of the two failure modes of fibers gives
rise to a complex bursting activity, where slow damage sequences trigger bursts
of breaking events. When the load is equally distributed over the fibers, the
size of damage sequences and of bursts, as well as the waiting times in between,
are characterized by universal power law distributions, where only the cutoffs
have material dependence. When stress concentrations arise in the vicinity of
failed regions, the power law distributions of noise characteristics prevail but
the exponents are different from their equal load sharing counterparts. In the
presence of stress concentration the failure process accelerates resulting in a higher
value of the waiting time exponent compared to the case of homogeneous stress
distribution.
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1. Introduction

It has long been recognized by industry that structural components exposed to a constant
or periodic loading can fail after a finite time even if the load amplitude is far below the
safety limit. In everyday life the mysterious sudden breakdown of car or kitchen equipment
is a similar experience. Since the load amplitude falls below the fracture strength of the
material the phenomenon is called sub-critical fracture. Sub-critical fracture has two main
types, i.e. when the external load is constant one speaks about creep rupture, while in the
case of periodic loading the phenomenon is called fatigue fracture [1]–[3].

The time dependent fracture of disordered media under sub-critical external loads
represents an important applied problem, with intriguing theoretical aspects [1]–[4]. Time
dependent fracture plays a crucial role in a broad variety of physical, biological, and
geological systems, such as the rupture of adhesion clusters of cells in biomaterials under
external stimuli [5], the sub-critical crack growth due to thermal activation of crack
nucleation [6]–[8], and the emergence of earthquake sequences [8, 9]. One of the most
important macroscopic scaling laws of time dependent fracture is the empirical Basquin
law of rupture life which states that the lifetime tf of samples increases as a power law
when the external load amplitude σ0 decreases [10]:

tf ∼ σ−α
0 . (1)

The power law behavior is valid for a broad class of heterogeneous materials; however,
the measured values of the Basquin exponent α have a large variation, which implies a
strong dependence on material properties [1]–[3], [10].

Laboratory experiments revealed that sub-critical fracture under constant or repeated
loading is due to a combination of several mechanisms, among which thermal activation
of microcrack nucleation, damage growth, relaxation due to viscoelasticity, and healing
of microcracks play an essential role [11]–[14]. Theoretical approaches have serious
difficulties in capturing all these mechanisms and in relating the microscopic dynamics
to the macroscopic time evolution of the system. Recently, stochastic fracture models
and the application of statistical physics have provided a novel insight into the fracture of
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heterogeneous materials under different loading conditions, but several interesting aspects
of sub-critical fracture remained unexplored [1]–[4], [12]–[16].

In this paper we present a detailed theoretical study of the sub-critical failure of
heterogeneous materials under a constant external load focusing on the microscopic
process of fracture and on the properties of crackling noise accompanying failure. To
obtain a theoretical understanding of the failure process, we extended the classical fiber
bundle model [17]–[24] by introducing time dependent damage accumulation of fibers so
that the model captures the stochastic nature of the fracture process, the immediate
breaking of material elements and the cumulative effect of the loading history [25, 26].
We demonstrate that the model reproduces the empirical Basquin law of rupture life;
furthermore, the deformation histories of loaded samples obey a generic scaling form. As
a continuation of our former studies [25, 26], we show that the sub-critical fracture of
heterogeneous materials is accompanied by crackling noise: the separation of timescales
of the two competing failure mechanisms of fibers leads to a complex bursting activity
on the microscale, where slowly proceeding damage sequences trigger bursts of breakings.
In the case of equal load sharing, the size of damage sequences and of bursts, as well as
the waiting times in between, are characterized by universal power law distributions. In
the more realistic situation of stress concentrations around failed fibers, the power law
functional forms of the noise characteristics prevail; however, the exponents are different
from their equal load sharing counterparts. Stress concentrations make the failure process
faster, so large waiting times become less frequent, increasing the value of the waiting
time exponent.

2. Damage accumulation and healing in fiber bundles

In order to give a theoretical description of sub-critical fracture of heterogeneous materials,
we have recently worked out an extension of the classical fiber bundle model. In the
following we summarize the main components of the model construction based on [25, 26].
We consider a bundle of parallel linear elastic fibers with the same Young modulus E.
When the bundle is subjected to a constant external load σ0 the fibers gradually fail due to
two physical mechanisms: fiber i (i = 1, . . . , N) breaks instantaneously at time t when its
local load pi(t) exceeds the tensile strength pi

th of the fiber. Those fibers which remained
intact (did not break immediately) undergo a damage accumulation process due to the
load that they have experienced. The amount of damage Δci that occurred under the
load pi(t) in a time interval Δt is assumed to have the form

Δci = api(t)
γΔt; (2)

hence, the total accumulated damage ci(t) until time t can be obtained by integrating over
the entire loading history of fibers. The damage law equation (2) assumes a power law
relation of the rate of damage Δci and of the local load pi, which is analogous to the usual
relation leading to the Weibull distribution of the materials’ strength [27]. Experiments
have shown that healing of microcracks can play an important role in the time evolution
of certain materials especially at low load levels. Healing can be captured in the model
by introducing a finite range τ for the memory, over which the loading history contributes
to the accumulated damage [15]. In a broad class of materials the healing of microcracks
typically leads to an exponential form of the memory term [2]. Hence, the total amount
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of damage accumulated up to time t also taking into account the healing of microcracks
can be cast into the final form

ci(t) = a

∫ t

0

e−(t−t′)/τpγ
i (t

′) dt′. (3)

The exponent γ > 0 controls the rate of damage accumulation, and a > 0 is a scale
parameter. In principle, the range of memory τ can take any positive value τ > 0 such
that during the time evolution of the bundle the damage accumulated during the time
interval t′ < t − τ heals. The fibers can only tolerate a finite amount of damage and
break when ci(t) exceeds a threshold value ci

th. Each fiber is characterized by two breaking
thresholds pi

th and ci
th which are random variables with a joint probability density function

h(pth, cth). Assuming independence of the two breaking modes, the joint density function
h can be factorized into a product

h(pth, cth) = f(cth)g(pth), (4)

where f(cth) and g(pth) are the probability densities and F (cth) and G(pth) the cumulative
distributions of the breaking thresholds pth and cth, respectively.

After failure events, the load of the broken fibers has to be overtaken by the remaining
intact ones. As a first step, we assume that the excess load is equally redistributed over the
intact fibers in the bundle irrespective of their distance from the failure point. Under this
equal load sharing (ELS) assumption important characteristic quantities of the system can
be obtained by analytic means [17]–[24]. Later on we make the treatment more realistic
via localized load sharing (LLS) where the excess load is redistributed in the close vicinity
of the broken fiber. Under a constant tensile load σ0, the load on a single fiber p0 is
initially determined by the quasi-static constitutive equation of FBM [17]–[24]:

σ0 = [1 − G(p0)] p0, (5)

which means that fibers with breaking thresholds pi
th < p0 immediately break. It follows

that the external load σ0 must fall below the tensile strength of the bundle σ0 < σc;
otherwise the entire bundle will fail immediately at the instant of the application of the
load. This feature is valid irrespective of the range of load sharing, so in LLS bundles
the corresponding critical load, which is lower than that of the ELS system, has to
be considered. As time elapses, the fibers accumulate damage and break due to their
finite damage tolerance. These breakings, however, increase the load on the remaining
intact fibers which in turn induce again immediate breakings. In this way, in spite of the
independence of the threshold values pth and cth, the two breaking modes are dynamically
coupled, gradually driving the system to macroscopic failure in a finite time tf at any
load values σ0. Finally, the evolution equation of the system under equal load sharing
conditions can be cast in the form

σ0 =

[
1 − F

(
a

∫ t

0

e−(t−t′)/τp(t′)γ dt′
)]

[1 − G(p(t))] p(t), (6)

where the integral in the argument of F provides the accumulated damage at time t taking
into account the finite range of memory [15]. Equation (6) is an integral equation which
has to be solved for the load p(t) on the intact fibers at a given external load σ0 with the
initial condition p(t = 0) = p0 obtained from equation (5). The product in equation (6)
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arises due to the independence of the two breaking thresholds. With minor simplifying
assumptions, equation (6) can also be solved analytically. In order to make the model
more realistic, in the present paper we also consider the case of localized load sharing
which can only be investigated by computer simulations.

3. Macroscopic time evolution

On the macrolevel the fracture process is characterized by the evolution of deformation
ε(t) of the specimen, which is related to p(t) as p(t) = Eε(t), where E = 1 is the Young
modulus of fibers. Neglecting immediate breaking and healing, the equation of motion of
the system equation (6) can be transformed into a differential equation for the number
Nb of broken fibers as

dNb

dt
= af(c(t))p(t)γN, (7)

where

p(t) =
Nσ0

(N − Nb(t))
. (8)

This equation system has to be solved for Nb(t) with the initial condition Nb(t = 0) = 0,
from which the deformation ε(t) can be determined using equation (8). For uniformly
distributed threshold values equation (7) becomes independent of the accumulated damage
c(t) and the exact solution of the equation of motion can simply be obtained as

ε(t) = σ0

[
tf − t

tf

]−1/(1+γ)

, (9)

where

tf =
σ−γ

0

a(1 + γ)
. (10)

Equation (9) shows that damage accumulation leads to a finite time singularity where the
deformation ε(t) of the system has a power law divergence with an exponent determined
by γ. Macroscopic failure occurs at a finite time tf which defines the lifetime of the system
equation (10). It is important to emphasize that tf has a power law dependence on the
external load σ0 in agreement with Basquin’s law, equation (1), found experimentally for
a broad class of materials [1, 2, 10, 25]. The analytic solution equation (10) shows that the
Basquin exponent of the model coincides with that of the microscopic damage law α = γ.

Another interesting outcome of the derivation is that the macroscopic deformation
ε(t) of a specimen undergoing sub-critical fracture obeys the generic scaling form

ε(t) = σδ
0S(tσβ

0 ), (11)

where the scaling function S has a power law divergence as a function of the rescaled
time-to-failure

S(tσβ
0 ) ∼ (ta − tσβ

0 )−1/(1+γ), with ta = a(1 + γ), (12)
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Figure 1. (a) Deformation as a function of time ε(t) obtained at different load
values σ0 with equation (10). Lowering the external load, the lifetime tf of
the system increases. (b) The analytic solution (continuous line) provides an
excellent fit of the experimental data (symbols) obtained for asphalt specimens
under periodic loading at different load amplitudes [25]. (c) On the basis of
the scaling form equation (11), the deformation–time diagrams ε(t) obtained at
different loads can be collapsed on the top of each other. (d) The scaling function
S has a power law divergence as a function of time-to-failure tf − t.

and the scaling exponents have the values δ = 1 and β = γ. Figure 1(a) presents examples
of the solution ε(t) of equation (6) obtained for breaking thresholds uniformly distributed
in the interval [0, 1] (i.e. g(pth) = 1 and f(cth) = 1) at different ratios σ0/σc setting
τ → ∞ (no healing is considered). The lifetime of one of the samples is indicated by the
vertical arrow. In can be seen that the results are in a nice qualitative agreement with
the experimental findings, i.e. the deformation is a monotonically increasing function of
time with an increasing derivative when the point of macroscopic failure is approached.
Lowering the external load σ0 the lifetime tf of the bundle increases. Since no healing is
taken into account, the specimen fails in the simulations under any finite load σ0 > 0, just
the lifetime tf takes very large values.

In figures 1(b)–(d) the theoretical results are compared to the experimental findings
on asphalt specimens of [25]. In the experiments, cylindrical asphalt specimens were
subject to diametrical compression applied periodically with a constant amplitude. The
failure process was followed by measuring the accumulated deformation at the end of
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Figure 2. The relaxation time tr and lifetime tf of the system as a function of the
external load. The threshold load σl below which no macroscopic failure occurs
is indicated by the vertical dashed line. The numerical solution of the full model
including also healing provides an excellent fit of the lifetime data for asphalt
specimens [25, 26] above the threshold load σl.

loading cycles as a function of the number of cycles Ncycle. Note that in our model
there is practically no difference between loading the system at a constant load σ0 and
periodic loading with a constant amplitude equal to σ0. For the quantitative comparison
we considered a Weibull distribution for the breaking thresholds

P (x) = 1 − exp [− (x/λb)
mb ], (13)

where the index b denotes p and c for immediate breaking and damage, respectively. The
excellent quantitative agreement of the experimental and theoretical results presented
in figure 1(b) was obtained by varying solely three parameters a, γ, and τ , while the
Weibull parameters were fixed. Figure 1(c) presents the verification of the scaling law
on experimental data. The good quality data collapse obtained by rescaling the two axes
demonstrates the validity of the scaling form equation (11). In figure 1(d) the scaling
function of the experimental data is re-plotted as a function of the time-to-failure where a
power law behavior is evidenced in agreement with the analytic prediction of equation (12).

We carried out computer simulations with the full model taking into account the effect
of immediate breaking, damaging and healing, to determine the lifetime of the system as
a function of the external load. Healing dominates if for a fixed load σ0 the memory time
τ is smaller than the lifetime obtained without healing τ � tf(σ0, τ = +∞). Computer
simulations revealed that for low load values the damage accumulation becomes limited,
and a threshold load σl emerges below which the system relaxes, i.e., the deformation
ε(t) converges to a limit value with a characteristic relaxation time tr resulting in an
infinite lifetime. Figure 2 presents the characteristic timescale of the system varying the
external load over a broad range. Above σl the lifetime tf of the system defines the
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characteristic time. It can be seen that the model provides an excellent agreement with
the measured lifetime of asphalt samples for σ0 > σl recovering also the Basquin exponent
α = 2.2 ± 0.05 [25]. In the low load regime σ0 < σl; unfortunately, no experimental data
set is available in the literature for comparison.

4. Crackling noise: bursts triggered by damage sequences

The macroscopic time evolution of the system presented above is characterized by the
scaling laws of the deformation–time histories and by the Basquin law of rupture life. The
main advantage of our fiber bundle model is that it makes it possible to investigate the
underlying microscopic failure process, and how the macroscopic evolution emerges as a
consequence of the competition of the two failure modes of fibers at the microscale.

Rewriting equation (6) in the form of the constitutive equation for simple FBMs as

σ0

1 − F (c(t))
= [1 − G(p(t))] p(t), (14)

it can be seen that even if the external load σ0 is constant, the slow damage process quasi-
statically increases the load on the system: ageing fibers accumulate damage and break
slowly one by one in the increasing order of their damage thresholds. After a number
Δd of damage breakings, the emerging load increment on the remaining intact fibers may
become sufficient to trigger a burst of immediate breakings. Since load redistribution and
immediate breaking occur on a much shorter timescale than damage accumulation, the
entire fatigue process can be viewed on the microlevel as a sequence of bursts of immediate
breakings triggered by a series of damage events whose duration defines the waiting times
T , i.e., the time intervals between the bursts. In the absence of healing, the unlimited
damage accumulation on the left-hand side of equation (14) leads to macroscopic failure
at any finite external load σ0 > 0 which occurs in the form of a catastrophic burst of
immediate breakings when the load of single fibers p(t) reaches the critical value pc of
simple FBMs.

In order to analyze the complex bursting activity of the model in the framework
of equal load sharing, we carried out computer simulations with finite samples of N
fibers, where the fibers had uniformly distributed breaking thresholds between 0 and 1.
When the external load σ0 is imposed, the weak fibers with breaking thresholds pi

th < p0

break immediately, where p0 is obtained from the constitutive equation, equation (5), of
static FBMs. Since each breaking event increases the load on single fibers p(t), bursts of
immediate breakings may be triggered by damage sequences. Under low external loads σ0,
the load increments after local breakings may not be sufficient to trigger bursts, so most of
the fibers break in long damage sequences, whose size Δd is defined by the number of fibers
breaking in the sequence. When σ0 approaches the static fracture strength σc, the system
becomes more sensitive to load increments of damage breakings resulting in an intense
bursting activity. The size of bursts Δ is determined as the number of simultaneously
breaking fibers as a consequence of a damage sequence. Figure 3 shows representative
examples of the size of damage sequences Δd and bursts Δ, and, furthermore, the waiting
times between bursts T for a series of individual events obtained at σ0/σc = 0.07 for
a system of N = 105 fibers. It can be observed in figure 3 that due to the disorder of
failure thresholds of fibers pi

th, c
i
th, i = 1, . . . , N , all the quantities have strong fluctuations.
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Figure 3. Bursting activity during the time evolution of a system of 105 fibers
under a constant external load σ0/σc = 0.07. The burst size Δ, the size of damage
sequences Δd, and the waiting time T are presented as a function of time t elapsed
since the bundle was subjected to load. After a number Δd of fibers break over
the duration T , the resulting load increment becomes sufficient to trigger a burst
of immediate breaking. The duration of damage sequences defines the waiting
time between bursts. All the three quantities have strong fluctuations due to the
disorder of fiber strength.

In spite of the smooth macroscopic response of the system, on the microlevel a jerky
breaking sequence emerges. Since the fracture process accelerates as macroscopic failure
is approached, the burst sizes Δ become larger, while the size of damage sequences Δd

and their duration T get reduced in the vicinity of tf .

The microscopic failure process is characterized by the size distribution of bursts
P (Δ), damage sequences P (Δd), and by the distribution of waiting times P (T ). The
burst size distributions P (Δ) are presented in figure 4 for several different load values
σ0. At small loads σ0 � σc most of the fibers break in long damage sequences, because
the resulting load increments do not suffice to trigger bursts. In this case the system
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P

Figure 4. Size distribution of bursts obtained at different external loads σ0. As
σ0 approaches the critical load σc a crossover occurs from a power law of exponent
5/2 to another one with a lower exponent 3/2.

behaves similarly to a simple FBM under quasi-static loading where the loading process
was stopped far below σc. Consequently, the burst size distribution P (Δ) has a rapid
exponential decay [17]–[22], [28, 29]. Increasing σ0, the burst size distribution becomes a
power law

P (Δ) ∼ Δ−ξ, (15)

with the well-known ELS exponent of FBM ξ = 5/2 [17]–[22], [28, 29]. When macroscopic
failure is approached, σ0 → σc, the failure process accelerates such that the size Δd and
duration T of damage sequences decrease, while they trigger bursts of larger sizes Δ, and
finally macroscopic failure occurs as a catastrophic burst of immediate failures. In the
limiting case of σ0 → σc, a large number of weak fibers break in the initial burst; hence,
the distribution P (Δ) becomes similar to that of quasi-static fiber bundles where the
disorder distribution has a finite lower cutoff [28]–[30]. It can be seen in figure 4 that the
burst size distribution exhibits a crossover to another power law with a lower exponent
ξ = 3/2, in agreement with [28, 29]. The lower value of ξ indicates the dominance of large
bursts in the limit of σ0 → σc.

Since damage events increase the load on the remaining intact fibers until an
immediate breaking is triggered, the size of damage sequences Δd is independent of
the damage characteristics c(t) and F (cth) of the material; instead, it is determined by
the load bearing strength distribution G(pth) of fibers. The size distribution of damage
sequences can be determined by calculating the average number of fibers which have to be
removed randomly from a fiber bundle under a constant load to trigger an avalanche, and
then integrating it over the entire loading history. Analytic calculations and computer
simulations revealed that the size distribution of damage sequences has a power law form
with an exponential cutoff

P (Δd) ∼ Δ−ω
d e−Δd/〈Δd〉, (16)

doi:10.1088/1742-5468/2009/01/P01021 10
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P

Figure 5. (a) Scaling plot of the size distribution of damage sequences.
(b) Scaling plot of waiting time distributions obtained at different load values.
Only the cutoff of the distributions depends on the details of the damage
accumulation law.

where the value of the exponent ω = 1 is independent of the disorder distribution and
of the parameters a, γ characterizing the rate of damage accumulation. The average size
〈Δd〉 of damage sequences determining the cutoff of the size distribution P (Δd) decreases
as a power law of the external load:

〈Δd〉 ∼ σ−1
0 . (17)

Figure 5(a) presents the scaling plot of distributions P (Δd) obtained at different external
loads σ0. The good quality data collapse verifies the validity of the scaling form
equations (16) and (17). The damage law c(t) of the material controls the timescale
of the process of fatigue fracture through the temporal sequence of single damage events.
In damage sequences, fibers break in the increasing order of their damage thresholds ci

th,
which determine the time intervals Δt between consecutive fiber breakings. Hence, the
distribution of inter-event times P (Δt) can be obtained analytically on the basis of the
property that the probability distribution of the ith largest element of a sorted sequence
of N thresholds is sharply peaked for each i for large enough N values. It follows from
the derivations that P (Δt) has an explicit dependence on γ as

P (Δt) ∼ Δt−(1−1/γ). (18)

However, the durations of sequences T =
∑Δd

j=1 Δtj , i.e., the waiting times between bursts,
follow a universal power law distribution

P (T ) ∼ T−ze−T/〈T 〉, (19)

where the value of the exponent z = 1 does not depend on any details of the system and
only the cutoff depends on γ:

〈T 〉 ∼ σ
−(1+γ)
0 . (20)
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In figure 5(b) the scaling plots of waiting time distributions obtained at different load
values are presented. The high quality data collapse obtained by rescaling the two axes,
and the power law behavior over six orders of magnitude demonstrate the validity of the
functional form equations (19) and (20).

5. Effect of stress concentration

The main advantage of the equal load sharing approach studied up to now is that it makes
it possible to obtain analytic results for the most important characteristic quantities of
the system, and it allows for large scale computer simulations. Since all intact fibers share
the same load, the equal load sharing approach cannot capture stress inhomogeneities; the
spatial sequence of local breakings is fully random in the fiber bundle. However, in realistic
situations, when materials get damaged, the stress field becomes strongly inhomogeneous.
It is an important question how the stress concentration arising around failed regions
influences the microscopic failure process and the bursting activity.

In order to clarify this problem, we carried out computer simulations putting the
fiber bundle on a square lattice of size L. After each breaking event the load of the
failed fiber is redistributed equally over its intact nearest neighbors, i.e. at most over
four fibers. Consequently, a considerable stress concentration arises along the surface
of failed regions resulting in non-trivial spatial correlations. Since the increased load
around broken fibers enhances both the rate of damage accumulation and the probability
of immediate breaking, additional fiber failures occur correlated such that bursts become
spatially correlated, resulting in growing cracks.

Figure 6(a) presents the burst size distributions for a square lattice of fibers of size
L = 401 obtained at different values of the load with the damage parameters a = 0.01,
γ = 2.0. It can be observed that like for the case of global load sharing, a power
law distribution occurs over several decades of burst sizes. The value of the exponent
ξLLS = 1.8 ± 0.05 falls between the two exponents of the ELS limit. It is interesting to
note that the power law develops even at relatively low load values σ0/σc > 0.06. Since
the load is redistributed over the close vicinity of the broken fiber, bursts are formed by
spatially correlated breaking events. This has the consequence that as the burst proceeds,
the stress concentration increases along its perimeter. However, due to the relatively low
external load, the system is able to tolerate even large spatially correlated bursts. As
σ0 approaches σc another power law regime of P (Δ) arises, i.e. for small avalanches the
distribution has a high exponent ξLLS ≈ 9/2, which coincides with the exponent of quasi-
static LLS fiber bundles [30, 31]. The crossover to the high value of the exponent shows
the dominance of the immediate breaking in the failure process, when the system is not
capable of tolerating large bursts.

The distribution of waiting times between consecutive bursts P (T ) exhibits also a
power law behavior with an exponent zLLS = 1.4±0.05 (see figure 6(b)). The higher value
of the LLS exponent with respect to its ELS counterpart implies that due to the stress
concentration around broken clusters, the failure process gets faster and the large waiting
times become less frequent in the system. Computer simulations performed with uniform
and Weibull distributions varying the damage accumulation exponent γ revealed that the
value of the waiting time exponent zLLS depends neither on the damage exponent γ nor
on the distribution of the two failure modes.
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Figure 6. (a) Burst size distributions P (Δ) obtained at different external loads
σ0 under local load sharing conditions. The distributions follow a power law
over a broad range of burst sizes with an exponent ξLLS = 1.8 ± 0.05. When σ0

approaches the critical load σc for small avalanches, another power law regime
develops whose exponent coincides with that of quasi-static LLS fiber bundles
ξLLS = 9/2 [30, 31]. (b) The waiting time distributions P (T ) show also a power
law behavior with an exponent zLLS = 1.4 ± 0.05 which is higher than its ELS
counterpart.

6. Summary

We carried out a theoretical study of the sub-critical fracture of heterogeneous materials
occurring under a constant external load focusing on the microscopic failure process.
We presented an extension of the classical fiber bundle model to capture the basic
ingredients of time dependent fracture. In the model, fibers fail due to two physical
mechanisms, i.e. the fibers break due to their elastic response when the load on them
exceeds the local strength, while intact fibers undergo an ageing process and break when
the accumulated damage exceeds a random threshold. Our analytical calculations and
computer simulations showed that the model provides a comprehensive description of
damage enhanced time dependent failure. On the macrolevel we demonstrated that the
deformation–time histories obtained at different external loads obey a generic scaling
form, where the scaling function has a power law divergence as a function of time-to-
failure. The model recovers the Basquin law of rupture life where the Basquin exponent
coincides with the exponent of damage accumulation rate. We showed that healing of
microcracks controls the failure process at low load levels determining the threshold load
of the material below which the specimen suffers only a partial failure and has an infinite
lifetime.

At the microlevel, the separation of timescales of the two failure mechanisms leads
to a complex bursting activity. The slow damage process breaks the fibers one by one
which gradually increases the load on the remaining intact fibers. As a consequence, the
slow damage sequences trigger bursts of immediate breakings which can be recorded in
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the form of crackling noise in experiments. Due to the disorder of fiber strength, the
size of damage sequences, the size of bursts, and the waiting times between them, have
strong fluctuations, and can be characterized by probability distributions. Analytical
and numerical calculations revealed that in the case of equal load sharing of fibers the
distributions of the characteristic quantities of bursts have universal power law functional
forms, where only the cutoff values depend on the details of the system. In the more
realistic situation of localized load redistribution we found that the distributions of burst
characteristics remain power laws; however, the LLS exponents are different from the
corresponding ELS values. Due to the concentration of stress along the crack boundaries,
the rupture proceeds faster, giving rise to a higher value of the waiting time exponent
compared to the ELS case.

We demonstrated that our theoretical results provide a comprehensive description of
the macroscopic time evolution of asphalt specimens measured during periodic loading
at a constant amplitude. Unfortunately, in these asphalt experiments no acoustic noise
was recorded due to technical difficulties. Recent experiments on various types of fracture
processes revealed a power law distribution of waiting times between consecutive local
breaking events [11], [32]–[35]. The measured value of the waiting time exponent typically
falls between 1.0 and 2.0 in reasonable agreement with our model calculations. We propose
further experimental tests of our theoretical predictions.
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