
Chapter 5
Crackling Noise in Digital and Real
Rocks–Implications for Forecasting
Catastrophic Failure in Porous Granular
Media

Ian G. Main, Ferenc Kun and Andrew F. Bell

Abstract ‘Crackling noise’ occurs in a wide variety of systems that respond to
steady-state external forcing in an intermittentway, leading to sudden bursts of energy
release similar to those heard when crumpling a piece of paper or listening to a fire.
In rock physics sudden changes in internal stress associated with microscopically-
brittle rupture events lead to acoustic emissions that can be recorded on the sample
boundary, and used to infer the state of internal damage. Crackling noise is inherently
stochastic, but the population of events often exhibits remarkably robust scaling prop-
erties, in terms of the source area, duration, energy, and in the waiting time between
events. Here we describe how these scaling properties emerge and evolve sponta-
neously in a fully-dynamic discrete element model of sedimentary rocks subject to
uniaxial compression applied at a constant strain rate. The discrete elements have
structural disorder similar to that of a real rock, and this is the only source of hetero-
geneity. Despite the stationary strain rate applied and the lack of any time-dependent
weakening processes, the results are all characterized by emergent power law distri-
butions over a broad range of scales, in agreement with experimental observation.
As deformation evolves, the scaling exponents change systematically in a way that
is similar to the evolution of damage in experiments on real sedimentary rocks. The
potential for real-time forecasting of catastrophic failure obeying such scaling rules
is then examined by using synthetic and real data from laboratory tests and prior to
volcanic eruptions. The combination of non-linearity in the constitutive rules and an
irreducible stochastic component governed by the material heterogeneity and finite
sampling of AE data leads to significant variations in the precision and accuracy of
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the forecast failure time. This leads to significant proportion of ‘false alarms’ (fore-
cast too early) and ‘missed events’ (forecast too late), as well as an over-optimistic
assessments of forecasting power and quality when the failure time is known (the
‘benefit of hindsight’). The evolution becomes progressively more complex, and the
forecasting power diminishes, in going from ideal synthetics to controlled laboratory
tests to open natural systems at larger scales in space and time.

5.1 Introduction

There is widespread interest in the prospect of forecasting system-sized catastrophic
failure events in porous media and in the Earth, from the failure of stone-built bridges
to landslides, rockfalls, volcanic eruptions and earthquakes, both natural and induced.
Most methods for investigating this problem rely on the recording of elastic waves
on the Earth’s surface or the rock sample boundary, in turn caused by much smaller
earthquakes or acoustic emissions that result from locally-brittle fracture and/or shear
events. Such analysis is often combinedwith changes in bulk properties such as stress,
strain, and elastic wave velocities where available. In the Earth it is not possible to
measure the stress directly – a significant handicap compared to a controlled lab-
oratory environment. Unfortunately, the search for reliable precursors to damaging
earthquakes has not so far proven fruitful despite the large literature on candidate
precursors [63]. Themany claimed ‘precursors’ can largely be attributed to the uncon-
scious biases that are associated with retrospective selection of data containing an
irreducible stochastic component ([21], see also example in [35], their Fig. 5.5). This
has in turn led to modern testing programmes that require forecasting of event prob-
ability to be made publically in real time as a ‘blind test’, and only then evaluated in
retrospect by the community (e.g. http://www.cseptesting.org/).

Many current models for such forecasting are statistical, based on empirical scal-
ing laws for seismicity that are also features of laboratory acoustic emissions on
a smaller scale. In turn they are part of a much larger family of systems exhibit-
ing ‘crackling noise’, where competition between local interactions and random
fluctuations in disordered media results in broad-band power-law scaling and clus-
tering in the resultant populations of discrete avalanches or ‘bursts’ of energy release
[53, 57].

In this paper we first introduce some of the conceptual models that have been
applied to populations of brittle rupture events in Earth materials on different scales
in space and time. We then describe some of the phenomenology observed in the
build-up to catastrophic failure in a controlled laboratory environment, and compare
these to the results of some recent numerical simulations for the emergent scaling
laws in space, time and event magnitude. Modern discrete element models are shown
to reproduce much of the phenomenology of acoustic emissions in real rock samples,
and highlight the fundamental role of structural disorder in controlling the emergent
behaviour in the population dynamics, including the evolution from spatially-random
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to localised brittle failure events. Finally we assess the implications of the emergent
behaviour in forecasting system-sized brittle failure events on different scales in
space, time and event magnitude.

5.2 Conceptual Models for the Population
Dynamics of Brittle Rupture

The population dynamics of brittle failure events is often addressed using theories
derived from the analysis of phase transitions in thermodynamics and statistical
mechanics. This approach has a relatively long pedigree. Griffith’s theory [15, 16]
for crack nucleation closely parallels Gibbs’ earlier theory [14] for the nucleation of
raindrops, substituting intact or broken solid as phases rather than liquid or vapour, the
specific surface energy for surface tension, the strain energy held in the bulk sample
for the degree of super-saturation in the cloud, and critically the degree of permanent
structural disorder (pre-existing micro-cracks or flaws) for fluctuations in tempera-
ture as a source of randomly-distributed potential nucleation sites. While raindrops
eventually fall out of cloud under gravity at a critical size, the original Griffith nucle-
ation theory allows arbitrarily large or system-sized avalanches to occur when the
pre-existing stable crack exceeds a critical length associated with the maximum in
free energy as a function of crack size. In practice a crack nucleating in a hetero-
geneous medium can also be stopped by random fluctuations in strength [51]. The
growing crack can also be ‘blunted’ by a stress shadow caused by a cloud of damage
or ‘process zone’ occurring ahead of the crack tip [4], also associated with random
strength fluctuations [52].

In more recent times the notion of phase transitions has been extended to describe
the population dynamics of far-from equilibrium systems, including earthquakes
and acoustic emissions, notably the statistical physics of critical point or near-critical
point systems. For example, in the laboratory themean source crack length y =< c >

and the cumulative number of acoustic emissions y = N inferred from acoustic
emission data both increase according to an inverse power law under steady-state
loading conditions of constant stress or constant applied strain rate

y = y0

(
1 − x

xc

)−ν

, (5.1)

where x may be strain or time, which diverges at a critical value xc, and the exponent
ν>0 [28, 29]. At the same time the scaling in the frequency-size distribution of
source energy (or seismic moment - the product of the shear modulus, the rupture
area and the average source displacement) take the form of a power-law with an
exponential cut-off

N = No (E/E0)
−B exp

(
− E

E∗

)
, (5.2)
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where the exponent B >0, subscripts zero denote characteristic values, and E* is a
characteristic energy related to the correlation length of the population of seismic
sources (approximately the size of the largest cluster of broken elements). While
a finite E* is required to maintain a finite flux of strain energy [31], it can often
be difficult to pin down in natural earthquake samples due to the small samples
currently available in instrumental and historical data compared to the timescales of
geological processes [7, 33]. Under these conditions the frequency-distribution can
be approximated as a pure power law for seismic energy ormoment, or an exponential
one in magnitudem – a form known as the Gutenberg–Richter law, log(N ) = a-bm,
where a is related to the total number of events and b = 3B/2 [31].

Equations (5.1) and (5.2) imply that the correlation length also diverges as in
(5.1). This inverse power law acceleration of the correlation length and the power-
law scaling of the size distribution are both characteristic of the approach to a critical
point in a variety of physical systems [11]. The analogy is complete when we regard
the stress drop (related to the difference in strain energy between intact and ruptured
phases) as an appropriate ‘order parameter’ which diminishes to zero at the critical
point [34].

The systems above require tuning of an external variable to bring the system to a
critical state, represented by a system-sized rupture in our case. In theEarth (andmany
other systems driven slowly at a constant rate of external forcing, and which release
energy intermittently in discrete dynamic events or avalanches) the system instead
appears spontaneously to have arrived at a steady state of near-critical behaviour,
where the system is perpetually in a state of near failure, including locations remote
from plate boundaries [1]. This state is commonly referred to as ‘self-organised
criticality’, a relatively loose term which includes near but not precisely critical
behaviour [34]. It describes the long-term averages in the system, and explains much
of the phenomenologyof earthquakes and faulting in a single unified theory, including
the observed power-law frequency-size distribution of events, the scale-invariant or
self-affine nature of observed fault structures and the ease with which earthquakes
can be triggered by relatively small natural or man-made stress perturbations in the
subsurface [31]. It also provides a physical basis for the assumption of long-term
stationarity in time-independent probabilistic seismic hazard estimation [30].

In a state of ideal strict self-organised criticality the timing of the next system-
sized event would be random and unpredictable. Such temporally-random behaviour
is also an explicit assumption in time-independent seismic hazard estimation. The
size of an individual event, modelled as a cascade or avalanche of neighbouring
failures, is an outcome of an inherently stochastic process in the absence of detailed
direct knowledge of the state of stress at each microscopic location in the Earth.
The question remains ‘does an earthquake know how big it is going to be when it
nucleates’? The answer is that itmay to some extent, in that there is aweak correlation
between the rate of seismic moment released in the first few seconds and the ultimate
seismic moment of earthquakes, albeit with a large scatter [13]. The moment rate
function is on average front-loaded, also consistent with the stacked data shown in
Fig. 5.4 of [41] and laboratory experimental data [59]. These results are consistent
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with each other despite the large differences in scale, but are inconsistent with the
mean field model of ([57], see their Fig. 5.7).

The large scatter between the seismic moment release soon after earthquake or
fracture nucleation and its eventual total originates from the large variability in the
complexity of the moment rate function [24, 57], and places significant constraints
on the precision with which one could estimate an ultimate earthquake size in time
to provide early warning (Kanamori, 2008). This large scatter is also consistent with
rupture propagation and arrest being controlled by details of the local strength and/or
dynamics that would be inaccessible to direct observation before it has occurred.
Together with the absence of systematic and reliable earthquake precursors [21],
this has led to a reduction in confidence in the viability of reliable and accurate
deterministic earthquake prediction as a realistic scientific goal (http://www.nature.
com/nature/debates/earthquake/equake_frameset.html). Nevertheless, the small but
finite stress drop in the Earth allows at least in principle a degree of ‘intermittent
criticality’ [22, 34]. Unfortunately the search for the implied acceleration to failure
of the form of (5.1) has so far not passed the rigorous statistical testing needed to
establish this as a general phenomenon in natural earthquake populations [17].

On the other hand purely statistical models for the probability of earthquake trig-
gering, including aftershocks, can lead to a significant probability gain in identifying
periods of transiently-elevated hazard when compared with random process, even in
real time [23]. Currently the best model for such ‘operational earthquake forecasting’
is based on an epidemic-type point process [49], itself a variant of a more general
class of self-exciting processes [19]. This model combines a random background rate
with a triggering probability for consequent events which satisfies a time-reversed
form of (5.1) known as the Omori law. In cases of induced or volcanic seismicity,
or during earthquake ‘swarms’ the background rate may be non-stationary. In the
Epidemic-Type Aftershock Sequence model of [49] earthquake size is randomly
sampled from the scaling relation (5.2) and the triggering rate depends on a ‘pro-
ductivity factor’ related to the triggering event magnitude (a logarithmic measure of
source energy or seismic moment). The magnitude difference can be negative in rare
cases due to the random sampling, leading spontaneously to occasional triggering of
larger events by a smaller one. The model can be expressed mathematically in the
following form:

λ (t) = μ + A
∑

i,ti<t
exp[α (mi − mC)]

(
1 + t − ti

c

)−p

(5.3)

where λ(t) is the event rate at time t , μ is the ‘background’ rate of independent
events above a threshold magnitude mC , c is a time constant ensuring finite event
rate at t = ti , p is theOmori–law exponent,α is the productivity factor for earthquake
magnitude mi , and A is an amplitude factor [49].

The model can be modified to include spatial clustering in the probability of trig-
gering, either solely by distance or also by azimuth relative to the parent fault orien-
tation, calculated by simulations of the immediate stress feedback and redistribution
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after a large event (e.g. [40]). Longer-term ‘stress renewal’ models which incorporate
ongoing loading and a stochastic element have also been used to estimate the effect
of longer-term memory on the system, but their probability gains above a random
process remain low [50].

5.3 Approach to Catastrophic Failure
in a Laboratory Environment

In laboratory experiments on ceramic materials, glasses and rocks, catastrophic
failure can occur below the critical stress for failure in vacuo, due to environmentally-
assisted crack growth, even under static load. Sub-critical crack growth by thermally-
activated chemical weakening processes under stress is also an intermittent, locally
dynamic process that results in acoustic emissions – themacro-crack grows in jumps,
and is associated with a cloud of damage associated with micro-cracks observed
around the growing fracture, concentrated near the crack tip (e.g. [18]). The consti-
tutive behaviour is often described empirically by a power law

V = dc

dt
= V0(K/K0)

n , (5.4)

where V is velocity, K is stress intensity (a measure of stress concentration, pro-
portional to the stress and the square root of nucleating crack length c), subscripts
zero denote initial values and n is an exponent known as the ‘stress corrosion index’
[43]. Similar power-law behaviour can also be seen in the acoustic emission event
rate dN/dt [42, 43]. This equation can be solved under conditions of constant stress
to predict accelerating crack growth c(t) or the total number of events N (t) of the
form of (5.1), with statistically-indistinguishable behaviour occurring under finite
but slow stress loading conditions [32].

The intermittent and non-linear nature of quasi-static, sub-critical, crack growth is
captured in the ‘lattice-trapping’ model, where the specific surface energy term in the
Griffith nucleation theory is modulated by a sinusoid representing periodic strength
variation in a crystal lattice, and the time-dependent intermittent crack growth rate is
controlled by the height of the resulting local free energy barrier and hence the rate
of the relevant chemical weakening reaction, modelled as a kinetic process ([27],
Chap. 6). This results in a thermally-activated, intermittent crack growth even at
constant stress, as well as other aspects of time-dependent behaviour such as static
creep or fatigue. The theory predicts an approximately exponential dependence of V
on K , but neglects the material disorder in the surrounding medium that is the origin
of damage away from the crack tip, and also likely to be a fundamental control on
the emergent power-law and the value of its exponent [28].

Time-dependent behaviour implies that the rate at which stress or strain is applied
will affect the rheology. At high strain rates rocks produce much more brittle behav-
iour under compressive loading, but also more associated damage and associated
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‘crackling noise’ in the surrounding medium that provide much more warning in the
sub-critical stage. At lower strain rates (5.1) still holds, but the onset of detectable
precursory acoustic emissions is delayed, thematerial becomesweaker (peak stress is
reduced), the acceleration to failure curve becomes much sharper and the proportion
of smaller events increases as the loading rate is reduced [48]. This strain-rate depen-
dent behaviour has also been seen in other systems, including twinning avalanches
occurring during high-speed impact events [53, 65].

In terms of spatial scale, the probability that one of the randomly-distributed
Griffith flaws or stress concentrators being activated increases with the volume of
the loaded specimen. Thus, catastrophic fracture initiates earlier for a large specimen
and themacroscopically-deduced critical stress is smaller. In terms of observation and
damage mechanics modelling, the material becomes both weaker and more brittle in
this respect as it increases in size, behaving more like a continuumwith a single flaw,
as expected by the theory of Linear Elastic Fracture Mechanics [55]. Again in the
limit of a very large system size, catastrophic failure would occur without warning
in such a system.

On both counts we would expect predictability of individual system-sized events
to degrade as the loading rate decreases and the system size increases. The logical
deduction from such scaling effects is that prediction of individual earthquakes is
intrinsically much harder than those of laboratory-scale fracture, and may not be
possible in practical terms. This is consistent with our experience of the practical
problem of deterministic earthquake prediction [23], including well-instrumented
areas where a positive absence of precursors and sudden-onset rupture has been
observed [2].

5.4 Squashing the Digital Rock

The above discussion has concentrated on empirical observation and models for
fracture of disordered or damagedmedia based largely onmean-field approximations
(damagemechanics), or simple cellular automatonmodels that capture the avalanche-
like nature of the dynamics, at the expense of reducing the dimensionality of the
problem to two, and the disorder to random processes acting on a geometrically-
regular grid of elements (e.g. [1]).However, in critical phenomena the relevant critical
exponents are known to depend to first order on the dimensionality of the model,
and empirically the observed structural disorder of porous media is more amorphous
than a grid. As a consequence it is necessary to tune the models to obtain the correct
values of exponents such as B in (5.2), notably the dissipation factor on stress transfer
after failure [34, 47].

Accordingly many researchers have turned to discrete element modelling of
porous media. In the model of [25, 26]; see also [3] three-dimensional particles
are represented by hard, unbreakable elastic spheres. Their diameter is selected ran-
domly from a broad-band (log-normal) distribution, similar to that observed in a
natural aquifer or hydrocarbon reservoir rock such as sandstone. The particles are
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Fig. 5.1 The digital rock: a
Illustration of its formation
under sedimentation; b final
configuration. Smaller
particles are in blue,
intermediate in darker
shades of red and larger ones
in bright red (from [25])

dropped into a cylinder under gravity, bounce around and settle in a sedimentation
process that introduces a realistic structural disorder (Fig. 5.1). The particles are then
cemented together by elastic bonds that can fail in either tension or torsion (shear),
in both cases when the relevant stress exceeds a uniform local bond strength. The
top few layers of particles are cemented by unbreakable bonds, effectively clamping
the top and bottom of the sample to the boundaries where the load is applied. Some
20,000 particles were used in the above references. For a typical reservoir rock with a
peak diameter at 200 microns, the equivalent bulk sample diameter is 6–7mm. This
is much smaller than the typical laboratory deformation testing range (2.5–10cm
diameter), but comparable to modern experiments aimed at elucidating the micro-
scopic mechanisms of failure using high-resolution CT scanning using X rays [10]
or neutron diffraction. At this stage of the modelling no layering or any other form
of correlation above that produced by random sedimentation is introduced. This is
not because we believe it to be unimportant. Instead it is because it is only with a
controlled comparison with a randomly-uniform disordered medium that we could
isolate the effect of such additional complexity at a later stage. The random uniform
properties of the digital rock are shown in Fig. 5.2.

The digital rock is then squashed by applying a load at constant displacement
rate to the upper surface of the cylinder, the lower one remaining fixed (see inset
on Fig. 5.3). The combination of elastic interactions with initial structural disorder
produces emergent stress heterogeneity, in the form of stress concentrations on ‘force
chains’, and stress shadows in between. Once a bond is broken the particles are free
to move dynamically and re-settle into a new configuration, arrested by the Hertzian
forces acting between neighbouring spheres in contact. The Hertzian contact is the
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Fig. 5.2 Properties of the digital rock (from [25]). a Probability density function for particle radius
R, normalised to its minimum value, based on sampling from a log-normal distribution. The vertical
line indicates the average value <R>. b Variability of <R> as a function of vertical position z,
normalized to the cylinder height H. c Probability density function for the number of contacts each
particle has with its neighbours nc. The vertical red line shows the average< nc > or ‘co-ordination
number’. d Co-ordination number as a function of z/H

basis for emergent frictional behaviour at the macroscopic level [56]. The broken
bonds do not heal, and stress is redistributed dynamically to the neighbouring bonds,
producing avalanches or cascades of bond ruptures representing correlated ‘bursts’ of
energy release. While elastic radiation does take place, there is no need to put model
transducers on the digital rock boundary and infer the source parameters. Instead
parameters such as event time, hypocentre location, source energy, rupture area (or
the number of broken bonds � as a proxy), average slip, the related seismic moment
(product of shear modulus, rupture area and average slip), inter-event time can all be
calculated directly from the model. The collective properties of this population are
then a direct analogue for the source parameters of the ‘crackling noise’ observed in
real rock samples during a laboratory test, with the advantage of having a complete
sample of all local failure events.
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Fig. 5.3 Squashing the
digital rock. The inset shows
the digital rock, diameter D0
and Height H0, with the top
few infinitely strong layers
highlighted in yellow, and
the direction of uniaxial
force as an arrow. The black
curve shows the stress σ as a
function of strain ε, the
vertical red lines represent
the rupture area proxy � for
each event, and the blue line
the average < � > (from
[26])

5.5 Properties of the Crackling Noise

The event sizes� are also shown in Fig. 5.3, both as a ‘comb’ plot of discrete individ-
ual events and as a running average. Crackling noise starts early –well before any sign
of non-linearity in the stress-strain curve, and the mean event size accelerates rapidly
after the yield point, in a manner similar to (5.1). The frequency-size distribution has
the same form as (5.2) over a broad range of length scales in Fig. 5.4. As deformation
progresses the best fit power-law exponent decreases (the slope becomes flatter) and
the implied correlation length (related to the largest rupture size) increases. System-
sized failure near the critical strain εc is marked by large apparent outlier events
from the trend in (5.2) often termed ‘dragon kings’ [58] or, for natural seismicity,
‘characteristic earthquakes’. Such a large gap between the largest and the next largest
correlated cluster of broken bonds, allied with the large stress drop, is more reminis-
cent of a first order phase transition. However, establishing such ‘dragon kings’ are
meaningful statistical outliers in natural data is often very difficult [45].

The event locations are dominated by the random disorder initially (see locations
of nucleation points illustrated in Fig. 5.4), but increasingly localise on an incipient
fault plane [25], just as occurs in experimental data on sandstone [28]. At the same
time the correlation function of nucleation points spontaneously tends to a power
law, with a power-law exponent (correlation dimension) decreasing to D2 = 2.25
near the failure time [25]. This behaviour is in good quantitative agreement with the
results of laboratory acoustic emission locations, where similar to the range observed
in laboratory tests where D2 starts off at around 2.75 when the deformation is more
randomly distributed, and then decreases to around 2.25 near the failure time [20].
At the same time the incremental frequency-rupture area exponent (for the range of
events shown) decreases from 1.1 to 0.4 (Fig. 5.4).
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Fig. 5.4 The left-hand diagram shows the evolution of the probability density function for source
size p(�), split up into consecutive increments of normalised strain indicated by the event numbers
shown. The diagram on the right plots the location of the nucleation points for dynamic rupture
cascades, an analogue for the location of acoustic emission sources

Figure5.5 compares the results of the discrete element model with those of a
laboratory test on natural sandstone. Themean event size for the digital rock increases
in a similar way to that expected from combining (5.1) and (5.2), and the real data
for event rate follow (5.1) directly, i.e. both are inverse power laws. The exponent ξ
of the probability density function p(�) decreases monotonically in the model from
around 4 to 1.5. The Gutenberg–Richter ‘b-value’ shown for the real data is defined
by the slope of the cumulative or incremental frequency curve for event magnitude,
itself a logarithmic measure of energy. For a sensor acting as a velocity transducer
and a constant stress drop model for acoustic emission sources, the b-value is related
to B in (5.2) by b = 3B/2 with E ∼ A1.5 and p(A) ∼ A−b−1 (e.g. [31]). Assuming
rupture area scales linearly with the number of broken bonds, A ∼ �, the values of ξ
imply a b-value decreasing from around 3 to 0.5 as failure approaches. This compares
with the observation on Fig. 5.4 that 1.5< b <0.5 in the laboratory tests. The absence
of higher b-values early in the loading cycle in the laboratory tests could be due to
a break down in the scale-independent stress drop model, or to data censoring of
smaller events below ambient noise levels. Nevertheless, the inferred b-values for
the later part of the real and laboratory tests are quantitatively similar, and exactly
the same (around 0.5) immediately prior to catastrophic failure. A b-value prior to
catastrophic failure of around half of the long-term average is also consistent with
values reported for earthquake foreshocks, in cases where they are observed after the
fact [44].

For the digital rock, the scaling may not be strictly self-similar. The energy of
the bursts E scales with � as E ∼ �1.15 [26]. This may be because the scaling of
slip to rupture area is self-affine (power-law of slope less than 0.5) rather than self-
similar, and/or because the parameter� (the number of broken bonds) does not scale
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Fig. 5.5 Comparison of the model simulation results (left hand column, replotted after [25, 26])
with a real dry rock (right-hand column, from [54]). The upper diagrams show the acceleration of
event size for the model (as in Fig. 5.3) compared to the event rate data (top right diagram). The
lower left diagram show the power-law exponent of the probability density function for source size
� (one curve for a constant strain window as in Fig. 5.4, and one for a constant number of events
in each sub-sample) compared to the seismic b-value evolution in a laboratory test

linearly with rupture area A. If we assume instead that magnitude is a logarithmic
function of energy, then the observed scaling range for ξ implies that the exponent
B for the energy distribution ranges from 2.9 to 0.37 or so, or an implied b-value
range for a scale-independent stress dropmodel of 4.3< b <0.55, i.e. a slightlywider
range for the early part of the loading cycle but a similar value immediately prior to
system-sized failure.

After catastrophic failure the digital rock is broken in two main intact blocks,
separated by a fault that takes the form of a deformation band of broken fragments
- as observed in laboratory tests (Fig. 5.6). The deformation band contains a fault
‘gouge’ of fragments or isolated original particles with a broad bandwidth of sizes –
with large fragments floating in a ground mass of smaller ones. There is significant
damage (local micro-fractures) in the zone around the main fault, and a complex
three-dimensional rugged geometry of the fault walls, with variable fault thickness
along the fault trace. The probability density function for particle mass in the digital
rock deformation band for particles containing at least two elements has the same
form as (5.2) with a power law exponent τ = 2.1 over two orders of magnitude [26],
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Fig. 5.6 Post-failure
structure. The upper diagram
shows a photo-micrograph of
a thin section of a deformed
laboratory sample of
sandstone (colour version of
the diagram shown in [37]).
The rock has been injected
with a fluorescent-dyed
epoxy resin to preserve the
structure and highlight
locations of fracturing in
blue. The lower diagram
shows the digital rock after
dynamic failure (from [25]):
a The broken elements are
shown in yellow, and the
intact in red. b Image with
broken elements removed

or (for the spherical particles of the discrete element model) an implied power-law
exponent for the incremental frequency of particle diameter of D = 3.3. For real
rocks the exponent of the frequency-particle length distribution for tests similar to
those that produced the thin section in Fig. 5.6 (from [36], their Fig. 4.15), and those
of real fault gouges (e.g. Table3.1 of [61]) is D ≈ 2.6. Themain differences are likely
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to be due to the angularity of the fragments in the real rock, the unbreakable nature
of the discrete elements in the digital rock, and the lack of a confining pressure in the
digital rock simulations. These remain a computational challenge that is currently
being addressed in fully 3D simulations [38].

Emergent power laws of the form of (5.2) are also observed in the probability
density functions for energy p(E), duration p(T ), and waiting time between events
p(tw) in the period before peak stress ([26], their Fig. 5.3). The distributions for
energy and duration both show evidence of roll-offs in probability for smaller val-
ues associated with a lower cut-off to scale-invariant behaviour, whereas the source
area proxy distribution p(�) does not. Best fits were obtained with the power-law
exponents α = 2.02, β = 2.4 and z = 2.0 for the probability density function of
burst energy, duration and waiting time respectively, averaged over the period prior
to the peak stress. This compares to an implied α = 1.67 for an average b = 1 in
the laboratory test of Fig. 5.5, and to α = 1.40 ± 0.05 for the uniaxial compression
experiments of Vycor, a synthetic silica ceramic of ∼40% porosity [5].

The exponent for thewaiting time distribution prior to peak stress in our numerical
model z = 2 is significantly higher than that found by [5] with z = 0.93 ± 0.05 for
most of the time range of their laboratory tests. This discrepancy is most likely
due to the absence of time-dependence in the properties of the digital rock at this
stage of the modelling. References [5, 60] showed that a power-law inter-event time
can be explained as an emergent property of the distribution of background and
‘aftershock’ events, based on the epidemic-type aftershock sequence (ETAS) model
for earthquake populations. Even without aftershocks or more generally triggered
events, a power law scaling in the inter-event time probability distribution can result
from a non-stationary linear increase in the rate of independent events [64]. The
lack of time dependence in our model means the properties of the digital rock do not
depend on the loading rate, also in contrast to that seen in laboratory experiments [48],
and would not result in long term creep and fatigue – another limitation compared
to real rocks and other kinds of porous media. Despite these caveats, the similarity
between the behaviour of the digital rock and laboratory samples, as well as the
scaling to the properties of the Earth’s crust are quite remarkable.

5.6 Implications for Forecasting

There are a number of clues to when catastrophic failure might occur, both in the
models and in the observations collected in laboratory tests described above. These
include event rate accelerating towards a singularity according to (5.1), reducing
b-value, increased localisation of events in space along an incipient fault plane,
and systematic changes to other exponents. In the laboratory or the digital rock a
visual yield point is clear and the peak stress is a strong indicator of the onset of the
final approach to failure. In the limit of an extremely brittle material catastrophic
failure does occur at peak stress, but for many porous rocks system–sized failure
occurs at a critical strain significantly beyond the peak stress, as captured in Fig. 5.5.
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The most accurate failure forecasting model will then involve a combination of
these metrics. This may be with a physical model (that also accounts for stochastic
fluctuations), or a statistical approximation that may have more Information content
(equally good fit with fewer free parameters). In practical scenarios there may be
insufficient data for such a rigorous approach due to lack of data. For example
practical volcano forecasting is often done using Bayesian ‘event trees’, where event
rate and b-value changes can be included formally, along with other more subjective,
‘expert’ knowledge [39].

Let us now consider an ideal case, where the underlying AE rate accelerates
to the critical point according to (1) plus or minus random fluctuations associated
with material heterogeneity and/or finite sampling (counting errors). This defines
the absolute limits of predictability of such an approach in an ideal case. By run-
ning several Monte-Carlo realisations [6, 8] mapped out the systematic and random
errors involved in fitting (5.1) to infer the forecast failure time and its uncertainty
for this case. To simulate a real-time or prospective forecast scenario they performed
the inference at different times prior to the pre-determined failure time. First they
showed that linearized versions of (5.1), often used for example in analysing seis-
micity associated with volcanic eruptions, introduce a systematic bias to the forecast
failure time, even when data including the failure time are used. Instead a fully non-
linear maximum likelihood fit to (1), assuming an underlying non-stationary Poisson
process, produces a less biased fit. The random or statistical uncertainties are initially
very large, and reduce significantly as more data are collected, and the most accurate
forecast is after the system-sized event has occurred. This highlights the practical
difficulties in evaluation of the significance of precursors retrospectively as descried
by [21].

In evaluating such behaviour it is also critical to test competing hypotheses for
the underlying behaviour of the time series. Accordingly [8] tested (i) stationary, (ii)
exponential acceleration and (iii) (5.1) models concurrently, selecting the preferred
model using a Bayesian Information Criterion, a modern form of Ockham’s razor
that accounts for the balance between the model residuals and the number of free
parameters. A precursor is detected when the stationary model can be rejected, and
a system-sized failure time cannot be defined unequivocally until (5.1) is the pre-
ferred model. The results showed that it is relatively easy to define a precursor, but
an unequivocal failure time cannot be determined until relatively late in the cycle.
Therefore it is possible to identify periods of enhanced probability of failure, but the
precise failure time may not be known until very near or after the fact.

In real volcanic earthquake data the acceleration (determined after the fact) can be
more complex that (5.1), leading to systematic errors in the best fit eruption time [7].
Such real data shows that accelerating sequences most often end in intrusions, where
magma freezes in place underground rather than being extruded in eruptions [12].
Unfortunately the statistics of these two processes cannot currently be distinguished,
so it is not possible to discriminate between them in real time unambiguously. This
implies that local Civil Protection authoritieswould then have to livewithmany ‘false
alarms’. In real volcanic data (1) can be a good fit, but often the exponential model is
preferred throughout or until just before the failure time. This limits the possibility of
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a successful planned and orderly evacuation based on such a deterministic forecast.
In this case there may be many ‘misses’ when the forecast time is after the eruption
time, as well as ‘hits’ when the two are the same within the extrapolated uncertainty.
Over time the ratio of ‘hits’, ‘misses’ and ‘false alarms’ will help quantify the hazard
and risk probabilities, and also help educate the public on the practical limits of what
science can do in forecasting such a complex, non-linear system [9]. Nevertheless,
this probabilistic, risk-based approach has achieved some remarkable successes,
leading to successful evacuations at the right time, for example at Mount St Helens,
US, in 1980 and at Pinatubo, Philippines, in 1991.

5.7 Influence of Material Heterogeneity
on Forecasting Power

TheGriffith theory highlighted the important role of heterogeneity due to initial flaws
(cracks and/or pores) in the fracture process of an otherwise intact material. Accord-
ingly it would not be surprising if material heterogeneity would have a significant
effect on the forecasting power. To test this notion Vasseur et al. [62] generate a suite
of synthetic samples porous silicate liquids undergoing the glass transition with vari-
able heterogeneity. A heterogeneity (disorder) parameter is defined by H = ϕ − 0.5,
where ϕ is the porosity, such that H = 0 when ϕ=0 (perfect order) and H = 1 when
ϕ=0.5 (perfect disorder). These synthetic porous media consisted of a range of sam-
ples of the same material, but with different porosity and microstructure (see their
Fig. 5.1), in turn controlled by the gas volume fraction held in the cell during their syn-
thesis. They then placed the synthetic rock under uniaxial compression, and recorded
the AE generated in the approach to catastrophic failure.

In analysing the data (Fig. 5.7, from [62]) the exponential model is preferred when
H is low, and the inverse power law when the degree of heterogeneity is high, as
anticipated by the fibre bundle model of [46]. If a best-fit inverse power law is forced,
then its prediction error (the normalised difference between the estimated failure time
and the actual one) decreases significantlywith the increasingmaterial heterogeneity.
In this sense catastrophic failure is easier to predict in heterogeneous materials. The
material with high H has fewer events (Fig. 5.7a) most likely because of a greater
proportion of ‘silent’ damage due to elastic pore closure as porosity increases. This
variability in behaviour as a function of the degree of material heterogeneity may
explain the large variability observed in real systems, and in time may improve the
reliability and accuracy of operational forecasts, if it can be used to constrain the
forecasting power in different settings.
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Fig. 5.7 Test of forecasting power as a function of the heterogeneity index H = φ − 0.5, where
φ is the porosity (from [62]). a Cumulative AE events (solid lines) and their maximum-likelihood
best-fit curves (dashed lines). b Model selection using the difference in the Bayesian Information
Criterion �BIC between exponential and inverse power-law acceleration in (a) The inverse power
law is preferred when �BIC < 0. c Heterogeneity-dependence of the forecast error, defined as the
absolute difference between the predicted failure time and the experimental failure time, normalised
by the deformation time, expressed as a percentage

5.8 Conclusion

A discrete element model with a particle size distribution similar to that of porous
sandstone can now reproducemany of the scaling relationships observed in crackling
noise in real rocks with similar properties. Despite the stationary loading rate and the
lack of any time-dependent weakening processes, the results are all characterized by
emergent power law distributions over a broad range of scales, in quantitative as well
as qualitative agreement with experimental observation. As deformation evolves, the
scaling exponents change systematically in a way that is similar to the evolution of
damage in experiments on real sedimentary rocks. The combination of non-linearity
in the constitutive rules and an irreducible stochastic component governed by the
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material heterogeneity and finite sampling ofAEdata leads to significant variations in
the precision and accuracy of the forecast failure time using constitutive rules derived
from the model. The evolution of the crackling noise becomes progressively more
complex, and the forecasting power diminishes, in going from the ideal behaviour
revealed by the discrete element model to controlled laboratory tests to open natural
systems at larger scales in space and time. Material heterogeneity plays a significant
part in the emergent power-law scaling, and also affects the forecasting power. The
results imply significant forecasting power above a randomprocess that could be used
in operational forecasting scenarios involving non-stationary seismicity, including
seismicity induced by subsurface engineering projects and by magmatic processes
leading up to volcanic eruptions.
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