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Failure process of fiber bundles with random misalignment

Ferenc Kun ,1,2 Lynet Allan ,1 Attia Batool ,3 Zsuzsa Danku,1 and Gergő Pál 1
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We investigate the failure process of fiber bundles with structural disorder represented by the random
misalignment of fibers. The strength of fibers is assumed to be constant so that misalignment is the only source of
disorder, which results in a heterogeneous load distribution over fibers. We show by analytical calculations and
computer simulations that increasing the amount of structural disorder a transition occurs from a perfectly brittle
behavior with abrupt global failure to a quasibrittle phase where failure is preceded by breaking avalanches. The
size distribution of avalanches follows a power-law functional form with a complex dependence of the exponent
on the amount of disorder. In the vicinity of the critical point the avalanche exponent is 3/2; however, with
increasing disorder a crossover emerges to a higher exponent 5/2. We show analytically that the mechanical
behavior of the bundle of misaligned fiber with no strength disorder can be mapped to an equal load sharing fiber
bundle of perfectly aligned fibers with properly selected strength disorder.
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I. INTRODUCTION

Fibrous materials are prevalent in a wide variety of ap-
plications from engineering to biology [1–6]. Understanding
and predicting the mechanical response of these materials is
crucial for the design and optimization of numerous prod-
ucts, ranging from composite materials to biological tissues
[7–11]. One of the key tools for studying the mechanical
behavior of fibrous materials is the fiber bundle model (FBM)
[12,13], which was introduced by Pierce in 1926 [14]. Since
then the model has been extended to capture a broad spec-
trum of material behaviors from plasticity [15,16] through
viscoelasticity [17–22] to thermal effects [23–25] and gained
widespread applications to analyze the failure and fracture
behavior of heterogeneous materials. In its simplest form,
the model considers a bundle of parallel fibers, all of which
are perfectly aligned and subjected to an external load par-
allel to the fibers’ direction. Fibers are assumed to have the
same stiffness but a random strength, which is described by a
probability distribution. After a fiber fails, its load has to be
redistributed over the remaining intact fibers. For load sharing
two limiting cases have been widely studied, i.e., equal load
sharing (ELS) when all fibers have the same load [26,27],
and localized load sharing (LLS) when load is redistributed
in the local neighborhood of the failed fiber [8,28–35]. In
the basic FBM the strength of fibers is the only source of
disorder the amount of which can be controlled by varying,
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e.g., the standard deviation of the strength distribution. Dur-
ing the past decades FBMs have provided invaluable insights
into the statistical nature of fracture and failure of het-
erogeneous materials both on the macro- and microscales
[22,26–28,36–45].

Despite the utility of the basic fiber bundle model, real-
world fibrous materials often exhibit complexities that are not
captured by the assumption of perfect alignment. In practice,
fibers can be misaligned because of manufacturing processes,
environmental factors, or inherent material properties [1].
Such misalignment can affect the load distribution among
fibers and, consequently, the fracture process of the bundle.
To address this, here we extend the traditional fiber bundle
model by incorporating structural disorder in the form of
the random misalignment of fibers. To isolate the effect of
structural disorder, in our model misalignment is the only
source of disorder, i.e., fibers are assumed to have the same
strength. By comparing the results of the misaligned fiber
bundle model of no strength disorder to the traditional aligned
model with strength disorder, we aim to elucidate the impact
of fiber orientation variability on the macroscopic properties
and failure dynamics of fiber bundles. We show that increas-
ing the degree of misalignment a transition occurs from a
perfectly brittle phase, where the first fiber breaking trig-
gers the catastrophic collapse of the bundle, to a quasibrittle
phase, where macroscopic failure is preceded by avalanches
of breaking fibers. The brittle to quasibrittle transition occurs
abruptly analogous to first order phase transitions. Computer
simulations revealed that in spite of the inhomogeneous load
distribution on fibers, the size distribution of avalanches has a
power-law behavior with a crossover between two regimes of
different exponents. For small misalignment and deformation
we establish a mapping between FBMs of misaligned fibers of
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FIG. 1. Demonstration of the model construction. (a) Bundle
of misaligned fibers between two loading plates. External load is
applied in the direction perpendicular to the plates. (b) Illustration of
the model parameters and variables: initial length L and elongation
�L of the bundle, the initial length l0

i and actual length li of a fiber
at the global elongation �L of the bundle, the force �F i exerted by an
elongated fiber. The degree of misalignment of fibers is controlled by
the distance x between their two ends along the loading plates.

no strength disorder with FBMs of aligned fibers of strength
disorder.

II. FIBER BUNDLE MODEL
WITH STRUCTURAL DISORDER

We consider a bundle of N fibers, which are assumed to
have a perfectly brittle behavior with a stiffness D. The bundle
is arranged between two parallel loading plates of distance L,
which defines the initial length of the bundle. The bundle can
be loaded in the direction perpendicular to the plates either
in a stress or strain controlled way. It is an important feature
of the model construction that fibers are not assumed to be
parallel to each other, i.e., they may have a certain degree of
misalignment, which is quantified by the distance x of the
fibers’ two end points along the plates (see Fig. 1 for an
illustration). To represent a disordered bundle structure we
assume that x is a random variable sampled from a probability
density function p(x) over the interval 0 � x � xm. Note that
fibers of the same misalignment x are not necessarily parallel
to each other. In the two-dimensional illustration of Fig. 1
tilting in the left and right directions from the bundle axis are
equivalent to each other. In three dimensions fibers of a given
x value may be rotated to any direction around the bundle axis.
Misalignment has the consequence that the initial length l0

i of
fibers becomes also a random variable

l0
i =

√
L2 + x2

i , (1)

being a monotonically increasing function of xi (i =
1, . . . , N). Figure 1 illustrates that under a slowly increasing
external load the elongation �li of fibers also depends on
the value of their misalignment xi: at the externally imposed
elongation �L of the bundle the fibers get elongated to the
length li, which depends both on �L and xi,

li(�L, xi ) =
√

(L + �L)2 + x2
i . (2)

Consequently, those fibers, which are aligned with
the load direction x = 0, suffer the highest elongation

�li = li − l0
i = �L; however, as x increases �li decreases.

Fibers are assumed to have a finite load bearing capacity so
that they break when their local strain εi = �li/l0

i exceeds
a threshold value εi

th (i = 1, . . . , N). For simplicity, we
assume that the misalignment of fibers is the only source of
disorder in the bundle so that both the stiffness of fibers D
and threshold strain of failure εth are assumed to be constant
set to the values D = 1 and εth = 0.05, respectively.

Elongated fibers exert a force �F , which is always parallel to
the fibers’ actual orientation (see Fig. 1). To characterize the
macroscopic response of the bundle we have to determine how
the vertical component, i.e., the y component F i

y of the local
force �F i of intact fibers varies with increasing elongation �L.
Taking into account that the angle � a fiber of misalignment x
encloses with the y direction evolves with the elongation �L
of the bundle as

cos �i = L + �L

li
, (3)

the vertical force component of a fiber i can be cast into the
form

F i
y = D

(
li − l0

i

)L + �L

li
. (4)

The total force Ft needed to maintain a globally imposed
deformation �L can be obtained as

Ft (�L) =
∑

i

′F i
y =

∑
i

′D
(
li − l0

i

)L + �L

li
, (5)

where the symbol ′ indicates that the summation is performed
only over those fibers, which are intact at the elongation �L.

We carried out analytical calculations and computer sim-
ulations to understand the macroscopic response and the
microscopic failure process of our FBM with random mis-
alignment. To control the amount of structural disorder we
considered a uniform distribution p(x) of misalignment x be-
tween 0 and xm with the probability density function

p(x) = 1

xm
. (6)

The degree of structural disorder owing to the misalignment of
fibers is characterized by the dimensionless ratio xm/L, which
was varied in the range 0 � xm/L � 100. In the following we
demonstrate by analytical and numerical calculations that our
FBM with structural disorder but no strength disorder exhibits
a complex response both on the macro- and microscales.
Simulations were performed with N = 105 fibers under stress
controlled conditions averaging over K = 1000 samples at
each parameter set.

III. MACROSCOPIC CONSTITUTIVE BEHAVIOR
OF THE BUNDLE

Assuming strain controlled loading the generic form of the
macroscopic constitutive equation of the bundle can be given
in a closed analytical form. It follows from the geometrical
arrangement of fibers that at an externally imposed elonga-
tion of the bundle �L, the local elongation of single fibers
�li(�L, xi ) (i = 1, . . . , N) is a decreasing function of their
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misalignment xi: fibers, which are aligned with the load di-
rection x = 0 have the highest elongation �li = �L, and �li
monotonically decreases with increasing xi. Since the failure
strain εth is assumed to be constant, it follows that fibers break
in the increasing order of their misalignment. Consequently,
at an elongation �L only those fibers contribute to the total
force Ft , which have a misalignment x larger than a threshold
value xl (�L), which depends on �L. These contributions can
be summed up by an integral

Ft (�L) = N
∫ xm

xl (�L)
Fy(�L, x)p(x)dx, (7)

which yields the force-elongation relation Ft (�L) of the bun-
dle. At the beginning of the loading process the global strain
of the bundle �L/L falls below the failure threshold �L/L <

εth, that is why no fiber breaking can occur. Consequently, in
this regime the lower bound of the integral is xl = 0. When
�L exceeds �Lmin = Lεth, all fibers break, which have a
misalignment below

xc =
√

(L + �L)2 − AL2

A − 1
, (8)

where A = (1 + εth)2. Hence, the lower bound xl of the inte-
gral form of the constitutive equation Eq. (7) can be cast into
the general form

xl (�L) =
{

0 if �L � Lεth,

xc if �L > Lεth.
(9)

For the case of uniformly distributed misalignment, explicit
results can be obtained by substituting the expressions of
Fy(�L, x) and p(x) from Eqs. (4,6) into Eq. (7),

Ft (�L) = ND(L + �L)

xm

∫ xm

xl

[
1 −

√
L2 + x2√

(L + �L)2 + x2

]
dx.

(10)

Figure 2 illustrates the force-elongation diagram of the bun-
dle, where the integral of Eq. (10) was calculated numerically
at each elongation �L for different amounts of structural
disorder xm. It can be seen that for small deformations the re-
sponse of the system is linear; however, the effective stiffness
of the bundle, i.e., the slope of the initial straight line, depends
on the amount of disorder xm. Since all fibers have the same
strength, in the limit of low structural disorder the Ft (�L)
curves have a sharp maximum followed by a sudden drop
of the force, which implies that the system would abruptly
collapse in a stress controlled experiment when reaching the
maximum of Ft . The decreasing regime of the constitutive
curves can only be realized in strain controlled experiments.
The largest value �Lmax of �L, where Ft reaches zero, is
determined by the upper bound of the misalignment xm in the
form

�Lmax = −L +
√

L2 + (A − 1)
(
L2 + x2

m

)
. (11)

With increasing disorder xm the initial brittle peak becomes
lower and the maximum elongation �Lmax of complete dis-
traction increases, while in between a second local maximum

FIG. 2. Force-elongation diagrams of the model at several values
of the disorder parameter xm. As xm increases the initial sharp peak
gets gradually reduced and a second local maximum develops. At the
xm value where the second maximum becomes higher than the first
one, a transition occurs from perfectly brittle to quasibrittle behavior.
For xm/L = 4.2 computer simulations (represented by the circles) are
compared to the analytical results. An excellent agreement can be
observed.

of Ft (�L) develops. Further increasing xm the second max-
imum becomes eventually dominating, i.e., it becomes the
global maximum of the force-elongation curve while the brit-
tle peak completely diminishes.

The uniform distribution of misalignment values has the
advantage that in the limit of small deformation �L � L the
constitutive curve can be analyzed analytically. Taylor expan-
sion of the denominator of the integrand in Eq. (10) yields the
approximate expression

√
(L + �L)2 + x2 ≈

√
L2 + x2

(
1 + L�L

L2 + x2

)
. (12)

Substituting it into Eq. (10) the integral form of the constitu-
tive equation simplifies to

Ft (�L) ≈ ND(L + �L)

xm

∫ xm

xl

L�L

L2 + x2
dx, (13)

from which we obtain the closed form

Ft (�L) ≈ NDL

xm
arctan

(
xm

L

)
�L. (14)

It can be observed that for small deformations �L � L, the
constitutive behavior of the system is linear in �L; however,
its effective stiffness Yeff , i.e., the slope of the initial straight
line, depends on the degree of disorder

Yeff = NDL

xm
arctan

(
xm

L

)
. (15)

Using the Taylor series of the arctan function as
arctan x ≈ x − x3/3 the effective stiffness can be cast into the
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FIG. 3. The critical force Fc (circles, left-vertical axis) and criti-
cal strain εc = �Lc/L (blue line, right-vertical axis) at which failure
occurs under stress controlled loading as function of the amount of
structural disorder xm/L. The local minimum of Fc marks the point xc,
which separates the phases of perfectly brittle and quasibrittle failure.
The red line represents the analytic results Eq. (17) for the critical
force in the perfectly brittle regime. An excellent agreement of the
numerical and analytical results can be observed. The green line
indicates the value of the second maximum of the force-elongation
curve, starting at about xm/L ≈ 3.0, when it first occurs. Above the
critical disorder xc, this maximum coincides with Fc (circles).

form

Yeff = ND

(
1 − 1

3

x2
m

L2

)
. (16)

This result shows that in the limit of zero structural disorder
xm → 0, the bundle stiffness is equal to that of the fibers. As
xm increases more and more fibers have a high angle with the
load direction, which gradually reduces the stiffness of the
system.

At sufficiently low disorder the initial peak is the global
maximum of the Ft (�L) curve, where immediate abrupt fail-
ure occurs in a stress controlled experiment. In this disorder
regime the overall response of the system is perfectly brittle.
However, when xm exceeds a threshold value xc = 4.095 ±
0.005 the second maximum becomes higher than the first brit-
tle peak, which implies that after the onset of fiber breaking
the bundle gets stabilized. As the load is further increased,
global failure of the bundle is approached through the gradual
accumulation of damage, making the bundle quasibrittle. Our
results show that varying the amount of structural disorder,
in our FBM a brittle–quasibrittle transition emerges at the
critical disorder xc. To obtain a quantitative characterization
of the disorder driven transition, we determined numerically
the position �Lc and the value Fc of the global maximum
of the force-elongation curve as a function of xm. It can be
observed in Fig. 3 that first Fc decreases with increasing xm

and reaches a minimum at a specific value of the disorder
xc, followed by an increasing branch of the curve. The min-
imum and the increasing regime of Fc indicate that the second
maximum of the Ft (�L) curve overcomes the first one and it

controls the macroscopic failure of the bundle. At the same
time the critical elongation �Lc corresponding to the maxi-
mum force Fc, remains constant in the brittle phase, then it
makes a finite jump to the second maximum at xc, and finally
increases with increasing disorder. Hence, the point xc can be
identified as the critical disorder where the transition from the
perfectly brittle to the quasibrittle behavior occurs. In Fig. 3
the value of the second maximum of the force-elongation
curve is also highlighted, which first occurs at xm/L ≈
3.0 and coincides with the value of Fc above the critical
disorder xc.

The maximum of the force Fc determines the fracture
strength of the bundle, which can simply be obtained in the
brittle regime as

Fc = YeffLεth, (17)

where Yeff has to be substituted from Eq. (16). Figure 3
presents a comparison of the numerical value of the peak
of Ft (�L) with the closed analytical expression Eq. (17)
of Fc as a function of the disorder parameter xm. An ex-
cellent agreement can be observed in the brittle phase
xm � xc.

IV. AVALANCHES OF BREAKING FIBERS

Under stress controlled loading the failure process of
heterogeneous materials is accompanied by bursts of local
breaking events, which is well captured by the classical FBM.
It has been shown that in FBMs, composed of perfectly
aligned fibers and loaded quasistatically parallel to the fibers’
direction, fibers break in avalanches, which are analogous to
the acoustic outbreaks registered in laboratory measurements
[6,26,27,30,46,47]. Analytical calculations have revealed that
under equal load sharing conditions the size distribution of
avalanches has a power-law functional form where the ex-
ponent exhibits a high degree of universality, i.e., the value
of the exponent is τ = 5/2 for a broad class of disorder
distributions [26,27,46]. When the load sharing is localized
to nearest-neighbor fibers a strong load concentration occurs,
which leads to a more brittle response where the bundle can
tolerate only small sized avalanches with a rapidly decaying
distribution, which also depends on the probability distribu-
tion of the strength of fibers [8,29–35].

Here we want to understand how the disordered structure
of the bundle affects the statistics of failure avalanches under
a quasistatically increasing external load. It is a very impor-
tant consequence of the misalignment of fibers that even if
the bundle is loaded between stiff plates the load sharing
is not equal in the sense that after the breaking of a fiber
the load increment an intact fiber receives depends on its
misalignment x. The rigidity of the loading plates ensures
that the load redistribution is global, i.e., each intact fiber
shares the increased load, however, not equally. To overcome
this computational difficulty, when exploring avalanches of
fiber breakings, we worked out the following simulation
technique:

(i) Initially, random misalignment values xi (i = 1, . . . , N)
are generated according to the probability distribution p(x).
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(ii) The critical elongation �Lc
i (i = 1, . . . , N) at which

fibers break is calculated from the condition

li
(
�Lc

i , xi
) − l0

i (xi )

l0
i (xi )

= εth, (18)

which yields

�Lc
i = −L +

√
L2 + (A − 1)

(
L2 + x2

i

)
. (19)

(iii) Fibers are sorted in the increasing order of their crit-
ical elongation �Lc

i . Since �Lc
i is a monotonous function of

the corresponding misalignment xi of fibers, sorting can also
be done already for the xi values, which is then followed by
the calculation of the critical elongation.

(iv) Calculation of the discrete force-elongation curve of
the bundle at the sorted critical elongations of fibers

Ft
(
�Lc

i

) =
N∑
j=i

F j
y

(
�Lc

i

)
. (20)

Here the summation index j on the right-hand side starts from
i since all the other fibers of the sorted sequence of �Lc

j
values have lower critical elongation �Lc

j < �Lc
i for j < i,

and hence, are broken at �Lc
i , where the force kept by the

intact fibers is calculated.
The curve of Ft (�Lc

i ) has strong fluctuations where the
decreasing regimes can only be realized in strain controlled
experiments. Under stress controlled conditions, the load can
be increased up to the next local maximum of Ft (�Lc

i ). When
this fiber is removed those fibers, which are in the subsequent
valley of the fluctuating curve, cannot keep the increased load,
and hence, break. To uncover avalanches of triggered break-
ings, after the external load increased to a local maximum of
the force-elongation curve, we search for the next maximum,
which is greater than the current one and remove the fibers of
the sorted sequence in between as an avalanche of breakings.
The size of the avalanche � is determined by the number of
fibers breaking in the triggered sequence.

When the global maximum of the force-elongation curve is
reached during the loading process, a catastrophic avalanche
is initiated, which wipes away all the remaining intact fibers.
Until the first peak is the highest point of the Ft (�L) curve,
this catastrophic avalanche is triggered already by the first
fiber breaking, which indicates the brittle character of fail-
ure. However, as the second maximum becomes higher than
the first one, the evolution of the fracture process drastically
changes. The first avalanche, generated between the two max-
ima, is still large, i.e., it comprises a macroscopic fraction of
fibers; however, it stops and the bundle gets stabilized, and
retains part of its load bearing capacity. Further increasing
the external load, the catastrophic avalanche is approached
through a sequence of stable avalanches.

For testing purposes we determined the constitutive curve
by computer simulations recording the load Ft (�Lc

i ) of the
bundle at each critical elongation �Lc

i (i = 1, . . . , N), where
the fibers break. In Fig. 2 the numerically obtained Ft (�Lc

i )
curve is compared to the analytical result for xm = 4.2, where
an excellent agreement is obtained.

To characterize the statistics of the size � of breaking
avalanches we determined the size distribution p(�) for

FIG. 4. Avalanche size distributions p(�) obtained at different
values of xm covering a broad range from the vicinity of the critical
point xc up to xm/L = 100. The straight lines represent power laws
of exponents τ = 3/2 and τ = 5/2.

several values of the maximum misalignment xm covering a
broad range from the vicinity of the critical point xc up to
xm/L = 100. It can be seen in Fig. 4 that p(�) exhibits a
power-law behavior

p(�) ∼ �−τ , (21)

where the value of the exponent τ has a complex dependence
on the degree of disorder xm. In the close vicinity of the critical
disorder xc the distribution p(�) is composed of a single
power law of a relatively low exponent τ = 3/2. The low
value of τ indicates the high frequency of large avalanches.
Comparing to the behavior of the constitutive curve Ft (�L)
in Fig. 2, these avalanches are generated around the second
maximum of the constitutive curve where the system has a
high susceptibility to load increments. Increasing xm the sys-
tem becomes more and more quasibrittle, i.e., the avalanches
are generated along a longer and longer nonlinear regime
of Ft (�L) before its maximum. It has the consequence that
the avalanche size distribution undergoes a crossover, i.e., for
small avalanches the low exponent τ = 3/2 prevails; however,
for the large ones a second power-law regime emerges with a
higher exponent τ = 5/2. The avalanche size �c correspond-
ing to the crossover point can be determined as the intersection
point of the two power laws fitted to the numerical curves
(see Fig. 4). Further increasing the amount of disorder xm,
the regime of the lower exponent shrinks, i.e., the crossover
avalanche size �c decreases, and the distribution becomes
again a single power law of exponent τ = 5/2 sufficiently
far from the critical point. In order to give a quantitative
characterization of the evolution of the crossover of the burst
size distribution with the degree of disorder we determined
the avalanche size �c corresponding to the crossover point.
Power laws were fitted to the regime of small and large
avalanches and the value of �c was obtained as the position
of the intersection point of the two straight lines on the double
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FIG. 5. The avalanche size �c corresponding to the crossover
point and the average size of the largest avalanche 〈�max〉 as function
of xm/L. The vertical dashed line indicates the value of the critical
disorder xc.

logarithmic plot (see Fig. 4). For this purpose, first the ranges
of avalanche sizes with different exponents were estimated
and then the power-law fitting was carried out using the maxi-
mum likelihood method [48], finally, the crossover avalanche
size �c was determined as the position of the intersection
point of the two power laws. Figure 5 demonstrates that as xm

approaches xc from above �c increases and coincides with the
average size of the largest avalanche 〈�max〉, which means that
the entire distribution is described by a power law of exponent
τ = 3/2. Increasing xm the value of �c gradually decreases.

To follow how the overall behavior of the system evolves
with increasing structural disorder, we determined the number
of avalanches n� that occurred up to failure (excluding the
catastrophic avalanche) and the total damage dc they caused.
The amount of damage is obtained as the fraction of broken
fibers, i.e., the sum of avalanche sizes that occurred up to
failure divided by the initial number of fibers

dc = 1

N

∑
i

�i, (22)

which falls between 0 and 1. Figure 6 shows that for xm < xc

no damage can occur, hence, dc = 0 holds. Above the critical
point xm > xc the system can support a growing amount of
damage, hence, the average damage 〈dc〉 rapidly increases
and saturates at around 〈dc〉 ≈ 0.66 for large xm. Damage
is formed by the consecutive avalanches of breaking events;
hence, the average number of avalanches 〈n�〉 exhibits the
same qualitative behavior as 〈dc〉, i.e., it has a zero value
〈n�〉 = 0 below the critical disorder xc, while it increases
monotonically above xc. We carefully analyzed the functional
form of both 〈dc〉 and 〈n�〉 as a function of the distance from
the critical point xm − xc in the regime xm > xc; however, nei-
ther power law nor exponential dependence could be pointed
out. The results demonstrate that in our system the brittle to

FIG. 6. Average damage 〈dc〉 accumulated up to failure and the
average number of avalanches 〈n�〉 as function of the degree of
disorder xm/L.

quasibrittle transition does not show an analogy to continuous
phase transitions in the sense that no scaling emerges in terms
of the distance from the critical point. Both characteristic
quantities 〈dc〉 and 〈n�〉, and the critical elongation of failure
�Lc have a finite jump at the critical disorder indicating a first
order type transition from the brittle to the quasibrittle phase
of the system.

V. RELATION TO FBMS WITH STRENGTH DISORDER

A special feature of our fiber bundle model is that it
does not contain strength disorder, i.e., the fibers have the
same threshold strain εth at which they fail irreversibly. How-
ever, the misalignment of fibers introduces structural disorder,
which in turn results in avalanches of triggered breaking
events. At a sufficiently high structural disorder the system
can stabilize after avalanches so that global failure is ap-
proached through a random sequence of breaking bursts and
its overall strength increases with the amount of disorder. To
understand how the increasing structural disorder gives rise
to the emergence of the brittle–quasibrittle transition, we ana-
lyzed how the failure elongation �Lc and force Fy kept by the
fibers depend on the degree of their misalignment x. Starting
from Eq. (19) one can show that for εth � 1 and x/L � 1 the
critical elongation �Lc of breaking takes the simple form

�Lc ≈ Lεth

(
1 + x2

L2

)
. (23)

The random misalignment x of fibers introduces randomness
for their critical elongation �Lc. Since x is uniformly dis-
tributed between 0 and xm, the probability density function
of �Lc can be cast into the form

p(�Lc) = 1

2xmεth

(
�Lc

Lεth
− 1

)−1/2

, (24)
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FIG. 7. Probability distribution p(�Lc ) of the critical elongation
�Lc of fibers at three different values of the upper bound of the
misalignment xm/L. The bold-black lines represent curves of the
analytical expression Eq. (24) with the corresponding parameters.

where �Lc spans the interval from Lεth and Lεth(1 + x2
m/L2).

It can be seen in Fig. 7 that even for xm/L = 1 the above
analytical expression agrees very well with the numerical
results over the entire range of �Lc. For higher values of
xm/L, Eq. (24) gives a reasonable description of the distri-
bution for small �Lc values. It is important to note that for
large upper bounds xm, in the regime of large misalignment
x � L the critical elongation becomes a linear function of x,
hence, the distribution p(�Lc) can be well approximated by a
uniform distribution. This behavior can be observed in Fig. 7
for xm/L = 100.

A similar analysis can be carried out for the force Fy kept
by the fibers. Starting from Eq. (4) it can be shown that in
the limiting case of xm/L � 1 and �L � L the fibers keep
practically the same load, the dependence on the misalignment
is negligible. It follow that under the above conditions the
behavior of our FBM where fibers have the same strength and
the only source of disorder is the misalignment of fibers, can
be approximated as an equal load sharing FBM of perfectly
aligned fibers, where fibers have a random strength described
by the probability density function Eq. (24). The macroscopic
stress-strain curve σ (ε) of ELS FBMs can be obtained analyt-
ically as

σ = Eε[1 − P(ε)], (25)

where P(x) denotes the cumulative distribution of fibers’
strength [12]. The expression Eε is the load kept by a single
intact fiber, while the term [1 − P(Eε)] yields the fraction
of intact fibers at the strain ε. The cumulative distribution
P(�Lc) of the threshold elongations can be obtained from the
probability density function Eq. (24) as

P(�Lc) = L

xm

(
�Lc

Lεth
− 1

)1/2

. (26)

FIG. 8. Constitutive behavior of a fiber bundle where fibers are
perfectly aligned (x = 0 for all fibers) but have a random strength
sampled from the distribution Eq. (24). The numbers placed next to
the curves indicate the value of xm/L.

Substituting this form into the general expression Eq. (25), the
constitutive equation of our ELS FBM reads as

Ft (�L) = �L

[
1 − L

xm

(
�L

Lεth
− 1

)1/2
]
, (27)

where �L goes from Lεth to Lεth(1 + x2
m/L2). Between 0 and

Lεth the force Ft has a linear dependence on �L. Figure 8
illustrates the behavior of the analytical expression Eq. (27)
for several values of xm. A strong qualitative similarity is
obtained between the evolution of Ft (�L) of Eq. (27) with
the degree of disorder xm and the behavior of the FBM with
misaligned fibers presented in Fig. 2. The results demonstrate
that the behavior of our FBM with structural disorder but no
strength disorder can be mapped to an ELS FBM where fibers
are perfectly aligned and the strength of fibers is the only
stochastic variable.

VI. FINITE-SIZE SCALING

The analytical expression of the constitutive equa-
tion Eq. (10) of the misaligned fiber bundle corresponds to
the infinite system size. However, for finite bundles consid-
ered in the numerical calculations, characteristic quantities of
the system have a nontrivial dependence on the number of
fibers N . To quantify this size effect we carried out computer
simulations to study how the strength of the bundle and the
avalanche size distribution evolve as the number of fibers N is
varied from 500 to 500 000.

For clarity, Figs. 9(a) and 9(b) present the size distribution
of avalanches p(�) obtained at different system sizes N for
two values of the degree of structural disorder xm, i.e., close
to the critical disorder [Fig. 9(a)] and far from it [Fig. 9(b)],
where single power laws are expected with exponents τ = 3/2
and τ = 5/2, respectively. The cutoff avalanche size of the
distributions increases with the number of fibers N , which
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(a) (b)

(c) (d)

FIG. 9. Avalanche size distributions p(�) for several system
sizes N at the degree of misalignment xm = 4.14 (a) and xm = 10
(b). Rescaling the data of (a) and (b) with appropriate powers α and
β of the number of fibers N along the horizontal and vertical axis
in (c) and (d), the curves obtained at different system sizes can be
collapsed on the top of each other. The value of the scaling exponents
are α = 2/3, β = 1 (c), and α = 2/3, β = 5/3 (d). The straight lines
represent power laws of exponent τ = 3/2 (c) and τ = 5/2 (d).

indicates that in larger systems larger avalanches can be gen-
erated; however, the value of the exponent τ remains the
same. Figures 9(c) and 9(d) demonstrate that rescaling the
data of Figs. 9(a) and 9(b) with appropriate powers α and β

of N along the horizontal and vertical axis the avalanche size
distributions of different system sizes can be collapsed on a
master curve. The value of α providing best collapse is the
same for both xm values α = 2/3; however, β has different
values β = 1 and β = 5/3 in Figs. 9(c) and 9(d), respectively.
The good quality data collapse implies that avalanche size
distributions p(�, N ) measured at different system sizes obey
the scaling structure

p(�, N ) = N−β	

(
�

Nα

)
, (28)

where the scaling function 	(x) has a power-law behavior
	(x) ∼ x−τ . It is important to emphasize that the exponents
fulfill the scaling law

β = τα (29)

with a high accuracy.
In the brittle phase of the bundle xm < xc, the first beam

breaking triggers a catastrophic avalanche; hence, the failure
strain εc is determined by the smallest failure threshold of
fibers as εc = �Lc

min/L. In a bundle of N fibers the average
value of the smallest failure threshold 〈�Lc

min〉N can be ob-
tained starting from the cumulative distribution Eq. (26),

〈
�Lc

min

〉
N

= P−1

(
1

N + 1

)
, (30)

FIG. 10. Average value of the critical strain 〈εc〉N in the brittle
phase of the system as a function of the number of fibers N for four
values of the degree of disorder xm. From each data set we subtracted
the asymptotic strength εth. The straight line represents a decreasing
power law of exponent 2. Rescaling the data along the vertical axis
by x2

m, the curves of different xm values collapse on the top of each
other.

where P−1 denotes the inverse of the distribution function
[49]. Substituting Eq. (26), the size dependence of the critical
elongation at the brittle peak can be cast into the form

〈
�Lc

min

〉
N = Lεth + x2

mεth

L
N−2. (31)

The result indicates that as the size of the bundle increases the
value of the critical strain 〈εc〉N = 〈�Lc

min〉N/L decreases to-
wards the asymptotic limit 〈εc〉N → εth according to a power
law of exponent 2. Figure 10 demonstrates that the numerical
results of size scaling have a perfect agreement with Eq. (31).
The analytical expression also shows that the degree of dis-
order xm affects the convergence to the asymptotic value. In
Fig. 10 the data corresponding to different xm values are scaled
with x2

m, which resulted in an excellent collapse of the curves,
in agreement with Eq. (31).

As a second example for the size scaling of macroscopic
characteristics of the misaligned fiber bundle, we analyzed
how the critical stress σc = Fc/N depends on the number of
fibers N in the quasibrittle regime xm > xc. Figure 11 demon-
strates that with increasing N the curves of 〈σc〉N converge
to finite asymptotic values σc(∞) at each disorder xm. Sub-
tracting the proper value σc(∞), power laws are obtained,
which are again collapsed on the top of each other by rescaling
with an appropriate power δ of the degree of disorder xm. The
numerical results imply the functional form

〈σc〉N = σc(∞) + AN−αxδ
m, (32)

where A is a multiplication factor. The scaling analysis pre-
sented in Fig. 11 revealed that the exponent α has the same
value α = 2/3 as for the cutoff of the avalanche size distribu-
tions in Figs. 9(c) and 9(d). The value of the exponent δ, which
describes the effect of disorder on the size scaling of fracture
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FIG. 11. Average value of the critical stress 〈σc〉N in the quasib-
rittle phase of the system as a function of the number of fibers N for
three values of the degree of disorder xm. The straight line represents
the power law of exponent α = 2/3. The value of δ providing best
collapse is δ = 2/3.

strength, proved to be δ = 2/3 providing best collapse in the
figure. The asymptotic values σc(∞) can be obtained from the
analytic solution of the constitutive curve Eq. (10).

VII. DISCUSSION

Disorder is an inherent property of natural materials and
also of many of the artificially made ones. Understanding the
role of disorder in fracture processes has a great importance
with a lot of interesting challenges both for theoretical studies
and practical applications. Among theoretical approaches, the
fiber bundle model is able to capture the relevant mechanisms
of the fracture of disordered materials but at the same time
its simplicity makes it possible to cast several characteristic
quantities into analytical forms as a function of the parameters
of the system.

In real fibrous structures fiber orientation may not be com-
pletely aligned so that not all fibers can be parallel to the
load axis. This misalignment of fibers can affect both the
macroscopic response of fibrous system and the microscopic
process of their fracture under an increasing load. To inves-
tigate this effect, here we considered a fiber bundle model,
which has a disordered microstructure, i.e., fibers are allowed
to be misaligned in such a way that the fibers’ two end points
are displaced with a random amount in the direction perpen-
dicular to the bundle axis. We analyzed the behavior of the
model focusing on the effect of the degree of structural disor-
der, which is controlled through a parameter of the probability
distribution of the misalignment of fibers. To isolate the effect
of structural disorder, in our approach no strength disorder is
considered, i.e., fibers are assumed to break at the same local
strain.

Misalignment has the consequence that even if the bun-
dle is stretched between two hard plates, the load sharing
after fiber breaking is not equal: the excess load, intact fibers

receive from a broken one, depends on the fibers’ misalign-
ment, which implies a global but not equal load sharing. To
analyze the macroscopic response of the bundle we could
cast the force-elongation equation as an integral over the
stochastic misalignment. We demonstrated analytically and
numerically that for small elongations the behavior of the
misaligned fiber bundle is linear; however, both the stiffness
and fracture strength of the bundle decrease with increasing
misalignment. For low misalignment the end point of the ini-
tial linear regime is a global maximum of the force-elongation
curve, which implies that the breaking of the first fiber
triggers the immediate abrupt failure of the bundle. In this
perfectly brittle phase the bundle cannot tolerate any damage;
however, as the amount of structural disorder increases, the
force-elongation curve develops a second maximum, which
becomes gradually higher than the brittle one. Above the crit-
ical disorder the response of the bundle becomes quasibrittle,
where global failure is approached through stable avalanches
of breaking events. Further increasing the structural disor-
der the ultimate strength of the bundle increases while the
amount of damage the system can sustain saturates to a limit
value.

The disorder driven brittle–quasibrittle transition has been
widely studied before varying the strength disorder of fibers
in the absence of structural randomness [22,40,42,50–54]. It
was found that in the vicinity of critical disorder characteristic
quantities of the system exhibit scaling, and the transition
occurs analogous to continuous phase transition. Here we
demonstrated that structural disorder alone makes the tran-
sition abrupt characterized by a finite jump of the critical
elongation and damage at the brittle-quasibrittle critical point,
and by the absence of scaling. We established a mapping
between our FBM of structural disorder and heterogeneous
load distribution to an ELS FBM where fibers are perfectly
aligned but have strength disorder. The mapping provides an
adequate description of the behavior of misaligned bundles
for sufficiently low disorder and low deformations. Based
on the mapping we could demonstrate that first order type
brittle–quasibrittle transition can also occur in ELS FBMs
with properly selected strength disorder.

In the calculations we used uniformly distributed misalign-
ment values between 0 and an upper bound, which had the
advantage that, on the one hand, it allowed for analytical
calculations, and on the other hand, we could easily control
the degree of disorder by varying the upper bound of mis-
alignment values. However, it is important to emphasize that
the qualitative behavior of the fiber bundle does not change
if misalignment values are distributed over an infinite inter-
val. For instance, in the case of the exponential distribution
p(x) = (1/λ) exp (−x/λ) between 0 and +∞, at low values
of the average misalignment λ, brittle failure occurs at the
fixed threshold strain εth because of the high fraction of fibers
nearly aligned with the bundle axis. Gradually increasing
λ, the force-elongation curve develops a second maximum,
which becomes higher than the brittle peak at a critical
value λc.

From the viewpoint of applications, a very important con-
sequence of our results is that an aligned fiber bundle, which
has a brittle behavior owing to the nearly constant strength
of fibers, can be stabilized by randomizing its structure.
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Introducing a sufficient degree of structural disorder in the
form of misalignment of fibers can make the failure process
quasibrittle, where macroscopic failure is preceded by break-
ing avalanches, and the fracture strength of the bundle exceeds
the one of its aligned counterpart.

It is also a very interesting feature of our system that in
spite of the inhomogeneous distribution of load on fibers,
breaking avalanches have a power-law behavior. As the
amount of structural disorder increases a crossover emerges
between two power-law regimes of different exponents. The
value of the exponents is equal to the mean field avalanche ex-
ponents of FBMs, which have been found before analytically
[12,46,47]. Our simulations showed that both the macroscopic
strength and the size distribution of avalanches depend on the
size of the bundle. We performed a scaling analysis, which
revealed that in larger systems larger breaking avalanches can

emerge, and the macroscopic strength parameters converge
towards finite asymptotic values, all described by scaling
exponents. Our study demonstrates that structural disorder
results in a highly complex behavior of the failure process
of fibres structures. Of course, when two sources of disorder
are present in the system, i.e., structural and strength disorder,
further interesting effects are expected, which will be explored
in a forthcoming publication.
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