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ABSTRACT

We investigate how the interplay of the topology of the network of load transmitting connections and the amount of disorder of the strength
of the connected elements determines the temporal evolution of failure cascades driven by the redistribution of load following local failure
events. We use the fiber bundle model of materials’ breakdown assigning fibers to the sites of a square lattice, which is then randomly
rewired using the Watts–Strogatz technique. Gradually increasing the rewiring probability, we demonstrate that the bundle undergoes a
transition from the localized to the mean field universality class of breakdown phenomena. Computer simulations revealed that both the size
and the duration of failure cascades are power law distributed on all network topologies with a crossover between two regimes of different
exponents. The temporal evolution of cascades is described by a parabolic profile with a right handed asymmetry, which implies that cascades
start slowly, then accelerate, and eventually stop suddenly. The degree of asymmetry proved to be characteristic of the network topology
gradually decreasing with increasing rewiring probability. Reducing the variance of fibers’ strength, the exponents of the size and the duration
distribution of cascades increase in the localized regime of the failure process, while the localized to mean field transition becomes more
abrupt. The consistency of the results is supported by a scaling analysis relating the characteristic exponents of the statistics and dynamics of
cascades.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0089634

Cascading failure driven by the redistribution of load after local

damage events of connected elements often occurs in our tech-

nological environment. From the cascading blackouts of electric

transmission grids, through the failure avalanches of transporta-

tion and communication networks to the crackling bursts accom-

panying the breakdown of materials, a large variety of failure

phenomena can be mentioned that often have a strong economic

impact. Here, we investigate how the interplay of the topology of

the network of load transmitting connections and the randomness

of the strength of the connected elements governs the tempo-

ral evolution of failure cascades. Based on computer simulations

of a generic model of failure spreading, we determine the aver-

age temporal profile of avalanches and explore how the shape of

the profiles evolves as the structural randomness of the under-

lying network and the amount of disorder of node strength are

varied.

I. INTRODUCTION

Avalanching or cascading dynamics, where a local event of
activity triggers a sequence of events, is a common feature of a
broad variety of complex systems.1–4 Examples range from the epi-
demic spreading on social networks,5–9 through the avalanche activ-
ity of neural networks10 to the crackling bursts accompanying the
fracture of heterogeneous materials11–14 up to the length scale of
earthquakes.15 The statistics of the size (magnitude) of avalanches
has been extensively studied as a primary source of information
on the intermittent dynamics of complex systems.10,16 Recently, it
has been demonstrated in the field of Barkhausen noise of ferro-
magnetic materials17 and in fracture processes18 that the temporal
profile of avalanches provides a deeper insight into the underlying
dynamics of avalanche formation. Careful experiments revealed that
Barkhausen avalanches have a parabolic profile with a left handed
asymmetry.19 Subsequent theoretical investigations clarified both
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the origin of asymmetry and the scaling relations of the character-
istic quantities of avalanche profiles and the statistics of the size and
duration of avalanches.19–21 Recently, it has been shown for mod-
els of the spreading of diseases and information, furthermore, for
the activity patterns of neural networks that the avalanche profiles
are sensitive to the topology of the contact network of the elements
of the system.9 In particular, the degree distribution of the network
proved to play a crucial role in the temporal evolution of cascades.
A parameter regime of network topologies could be identified where
the Markovian dynamics of spreading leads to parabolic avalanche
profiles with a left handed asymmetry.9

Cascading failure driven by the redistribution of load following
the local damage of connected elements often occurs in our tech-
nological environment, e.g., in the case of the cascading blackouts
of electric transmission grids2 or in the breakdown of communi-
cation and transportation networks.8–10,22–25 Failure cascades form
a distinct class of cascading activities in the sense that as the cas-
cade spreads, elements of the system become irreversibly inactive
without any further ability to support load. The reduction of the
load bearing capacity together with the constraint of load conserva-
tion can easily give rise to large scale breakdown events spanning
a macroscopic fraction of the system.24–29 The statistical features
of such failure cascades have recently been studied using discrete
models;24,25 however, much less is known about their temporal
evolution and its dependence on the structure of the underlying
network.

Here, we use the fiber bundle model (FBM) to investigate how
the interplay of the structure of the underlying network of load
transmitting connections and the amount of disorder of the load
bearing capacity (strength) of the nodes determines the dynamics of
failure avalanches and the relation of their dynamical and statistical
features. In spite of their simplicity, FBMs of materials breakdown
have proven very useful in studying cascading failure phenomena
since the model is able to capture the essential mechanisms of inter-
mittent failure spreading.3,27,28,30 In the standard setup, FBMs are
composed of a set of parallel fibers organized on a regular lattice.
Under a slowly increasing external load, the fibers fail irreversibly
when the local load on them exceeds their strength value, which is
assumed to have a certain amount of randomness. The load dropped
by the broken fiber gets redistributed over the remaining intact ones,
which may trigger additional breakings giving rise to the emer-
gence of an extended failure cascade. The generality of this spreading
mechanism makes FBMs a basic modeling framework for cascad-
ing failure29,31–33 since fibers can easily be replaced by electric power
stations2,34–36 on a high voltage transmission grid, by flow channels,37

or by roads carrying traffic.38,39 In our study, the complex network
of load transmitting connections is obtained by assigning fibers to
the sites of a square lattice which is then randomly rewired using
the Watts–Strogatz technique.40 Gradually increasing the rewiring
probability, we demonstrate that the bundle undergoes a transition
from the localized to the mean field universality class of breakdown
phenomena. Computer simulations revealed that both the size and
the duration of failure avalanches are power law distributed on all
network topologies with a crossover between two regimes of differ-
ent exponents. The temporal evolution of cascades is described by
a parabolic profile with a right handed asymmetry, which implies
that avalanches start slowly, then accelerate, and eventually stop

suddenly. The degree of asymmetry proved to be characteristic of
the network topology.

II. FIBER BUNDLE MODEL ON COMPLEX NETWORKS

To study the spreading of failure cascades, we consider a bundle
of parallel fibers that are assigned to the nodes of a complex net-
work. To generate the network of connections along which load is
redistributed over fibers, we start from a regular square lattice of
side length l with N = l2 fibers and use the Watts–Strogatz rewiring
technique to randomize the connections.40,41 The degree ki of node
i (i = 1, . . . , N), is defined as the number of interacting partners
(nodes) directly connected to i through links of the networks. Ini-
tially, on the square lattice, all fibers are connected to their four
nearest neighbors along the edges of the lattice so that the probability
distribution of the node degree ρ(k) has the simple form ρ(k) = 1
for k = 4, and it is zero for any other k value. In the next step, each
of the L = 2N initially existing connections is rewired with a prob-
ability p (0 ≤ p ≤ 1) in such a way that for both ends of a rewired
link, a new fiber is selected randomly. In order to ensure that the
network forms a simple graph, rewiring is subject to the constraint
that neither multiple links nor loops are allowed (see Fig. 1 for illus-
tration of the model construction). These randomized connections
make the degree distribution ρ(k) broader while the average degree
of nodes 〈k〉 remains fixed 〈k〉 = 4. The evolution of the degree dis-
tribution ρ(k) of the bundle with increasing rewiring probability is
illustrated in Fig. 2. Note that the functional form of the degree dis-
tribution ρ(k) obtained by the rewiring algorithm can be described
as the convolution of a binomial and a Poissonian distribution.42 At
high values of p close to 1, small clusters composed of a few fibers
may form as a consequence of rewiring. To start the simulations

FIG. 1. Illustration of the model construction. A regular square lattice is grad-
ually randomized by means of the Watts–Strogatz rewiring technique. Periodic
boundary conditions are applied in both directions of the initial lattice. Links
of the network represent the load transmitting connections of fibers, which are
perpendicular to the plane of the lattice.
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FIG. 2. Degree distribution of the network of fibers at several rewiring probabilities
p. As p increases the distribution ρ(k) gets broader, however, the average degree
remains constant 〈k〉 = 4.

with a fully connected network, after rewiring, we identify all clus-
ters of nodes in the system and keep only the largest one for further
calculations.

The fibers of the model have a linearly elastic behavior up to
a threshold load σth, where they fail irreversibly. We assume that
the Young modulus of fibers is the same as E = 1; however, their
strength σth is a random variable with the probability distribution
p(σth). In the present study, the breaking thresholds are sampled
from a Weibull distribution,

p(σth) = m
σ m−1

th

λm
e−(σth/λ)

m

, (1)

defined over the range 0 ≤ σth < +∞. The distribution has two
parameters λ and m such that λ sets the scale of strength val-
ues, while m controls the functional form of the distribution. The
Weibull distribution Eq. (1) has two main advantages for our study:
on one hand, the fracture behavior of FBMs with such a fast decaying
strength distribution exhibits a high degree of universality, which
has been extensively studied on regular square lattices during the
past few decades.28,43 On the other hand, the Weibull distribution
makes it possible to vary the amount of disorder of the failure
thresholds, i.e., increasing the parameter m in the range m ≥ 1 the
width of the distribution, and hence, the variance of fibers’ strength,
decreases and tends to zero in the m → ∞ limit. In our model con-
struction, the strength σ i

th and degree ki of fibers (i = 1, . . . , N) are
uncorrelated.

To initiate the breakdown process, the bundle is subject to
a slowly increasing external mechanical load, which generates a
homogeneous stress field until the weakest fiber with the lowest
failure threshold breaks. The load of the broken fiber has to be redis-
tributed over the surviving intact ones. Recently, two limiting cases

of load sharing have been extensively studied both with a high the-
oretical and practical relevance: in the case of equal load sharing
(ELS), all the intact fibers share equally the excess load,27,28 while
for localized load sharing (LLS), the intact nearest neighbors take
over equally the load of the broken one.43–45 ELS realizes the mean
field limit of fiber bundles since under such conditions, no stress
fluctuations can arise in the system. However, for LLS, a strong load
concentration emerges around failed regions. Here, we apply nearest
neighbor interaction so that the load dropped by the broken fiber is
equally shared by its intact nearest neighbors on the network: when
fiber i of load σi fails during the loading process, then its ni intact
nearest neighbors all receive the load increment 1σi = σi/ni so that
the load σj of a neighboring fiber j is updated as

σj → σj + 1σi. (2)

The number of intact nearest neighbors ni can be obtained from the
adjacency matrix A of the network as

ni =

N∑

j=1

Aij, (3)

where Aij = 1 if fibers i and j are connected and they are both
intact, and 0 otherwise. As a consequence of load sharing, the load
of the neighboring fibers may exceed their local breaking thresh-
old resulting in additional breakings, which are then followed again
by load redistribution. As a result of subsequent breaking and load
redistribution steps, a single fiber breaking may trigger an entire
cascade of failures. The cascade stops when all the fibers receiving
load in a redistribution step can sustain the increased load. During
an avalanche, the external load is kept constant so that the failure
spreading is solely driven by the redistribution of load through the
transmission network. Localized load sharing implies that the fibers
breaking in an avalanche form a connected cluster on the load trans-
mission network in such a way that on the intact fibers along the
cluster perimeter a large amount of load can accumulate.

To ensure quasi-static loading of the bundle, after an avalanche
stops, the external load is increased again to break a single fiber
so that the load σi of each intact fiber is incremented by the same
amount δσ ,

σi → σi + δσ , (4)

where δσ is determined as the smallest difference between the load
σi and strength σ i

th of intact fibers δσ = mini(σ
i
th − σi). The ulti-

mate failure of the system occurs when a load increment triggers
a catastrophic cascade breaking all the intact fibers.

Simulations of the failure dynamics were performed starting
from a square lattice of size l = 400 with N = 160 000 fibers using
periodic boundary conditions in both directions. The scale param-
eter of the disorder distribution λ was fixed to λ = 1, while the
Weibull exponent m was varied in the range 1 ≤ m ≤ 15. For the
rewiring probability p, we considered 30 different values in the inter-
val 0 ≤ p ≤ 1. At each parameter set, averages were calculated over
2000 samples.

III. STATISTICS OF CASCADE SIZE AND DURATION

The microscopic mechanism of failure of the system is the cas-
cading breaking of fibers triggered by external load increments. The
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quasi-static loading ensures that a cascade always starts from a single
breaking fiber. After load redistribution, additional fibers of number
1s may break, which defines a sub-cascade of the evolving cascade.
To characterize single cascades, we determined their size 1 as the
total number of fibers breaking in the cascade and the duration (or
width) W, which is the number of breaking—load redistribution
steps performed until the cascade stops. The size 1 of a cascade,
the size 1s of its sub-cascades, and the duration W of the event are
related as

1 =

W∑

u=1

1s(u), (5)

where u is the internal time variable of a cascade (or simply the
integer index of sub-cascades).

As a cascade grows, it spreads over the transmission network,
which is demonstrated in Fig. 3 for an event of size 1 = 84 and
duration W = 24. In the figure, fibers breaking in a sub-cascade
are indicated by the same color so that starting from the exter-
nally imposed fiber breaking, one can easily follow the development
of the cascade through the consecutive sub-cascades (colors). Note
that fibers breaking in the same sub-cascade can be far from each
other, however, the entire cascade forms a connected cluster on the
network. The inset demonstrates how the size of sub-cascades 1s

evolves as the cascade is spreading on the network.

FIG. 3. Spreading of a failure cascade on the network of load sharing connec-
tions. The cascade starts and ends with a single breaking indicated by the arrows.
All fibers of the network that receive a load from broken fibers are indicated
by black circles and among them, the ones which break as a consequence of
load sharing are highlighted by colors different from black. For clarity, the cir-
cles representing broken fibers have also a larger size. Fibers breaking in the
same sub-cascade have the same color. The cascade in the example has the size
1 = 84 and durationW = 24. The inset presents the temporal profile 1s(u) of
the avalanche.

To characterize the statistics of the occurrence of cascades,
first we determined the probability distribution of their size p(1),
which proved to depend on the network topology of load transmit-
ting connections. On the regular square lattice p = 0 where strong
spatial localization of load occurs around broken clusters all the cas-
cades are typically small compared to the system size N, because
large cascades easily become catastrophic destroying the entire sys-
tem. Figure 4 demonstrates for the Weibull parameter m = 3 that
at p = 0 the size distribution p(1) can be well approximated as a
power law,

p(1) ∼ 1−τ , (6)

where the value of the exponent τ proved to be relatively high
τ = 4.7 ± 0.15 in agreement with former fiber bundle studies.44,46 At
higher rewiring probabilities p, the growing fraction of long range
connections reduces the load concentration, which allows the bun-
dle to tolerate larger failure cascades without catastrophic failure.
Consequently, in Fig. 4, the cutoff burst size 1max increases, and
the distribution p(1) undergoes a crossover to a second power law
regime with a lower exponent. Due to the increasing fraction of
larger avalanches emerging in the failure dynamics, the value of the
exponent τ gets gradually lower with increasing p. The crossover
burst size 1c depends on the rewiring probability in such a way that
with increasing p, the value of 1c shifts to smaller values. It can be
observed in Fig. 4 that in the limit p → 1, only a single power law
prevails with an exponent τ = 2.3 ± 0.1 significantly lower than that
of the original square lattice.

Usually, the duration of an avalanche is smaller than its size
W ≤ 1, where equality holds only when in all sub-cascades, a single
fiber breaks. It can be seen in Fig. 5 for the same parameters as in
Fig. 4 that the distribution of the duration of failure cascades p(W)

FIG. 4. The size distribution of failure cascades p(1) at different rewiring proba-
bilities p at the Weibull parameter m = 3. The two straight lines represent power
laws of exponents 2.3 and 4.7.
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FIG. 5. The distribution of the duration of failure cascades p(W) for the same
Weibull exponent m as in Fig. 4. As p increases, a crossover emerges between
two power law regimes of different exponents similar to the behavior of the size
distribution p(1). The two straight lines represent power laws of exponents 3.2
and 5.3.

has qualitatively the same behavior as the cascade size distribution
p(1) when the rewiring probability p is varied: for the regular lattice
p = 0, a power law distribution is evidenced

p(W) ∼ W−τW , (7)

with a relatively high exponent τW ≈ 5.3 showing that avalanches of
long duration rarely occur during the failure process. When long
range connections are introduced, the system can survive larger
avalanches of longer duration, hence, with increasing p a crossover
emerges between two regimes of different exponents. The crossover
duration Wc decreases with increasing p so that in the limit p → 1,
the crossover gradually disappears and a single power law prevails
with an exponent τw ≈ 3.2, which is significantly smaller than the
one of the regular lattice. It is important to note that the expo-
nent τW of the duration distribution is always higher than the size
distribution exponent τ .

To give a detailed characterization of the evolution of the statis-
tics of the size and duration of failure cascades as the network is
gradually randomized, we determined the average of the largest
size 〈1max〉 and the largest duration 〈Wmax〉 of cascades; further-
more, the power law exponents τ and τW of the distributions in
the regime of large avalanches as a function of the rewiring prob-
ability p for two values of the Weibull exponent m = 1.5, 3. It can
be observed in Figs. 6 and 7 that up to a threshold value of the
rewiring probability pl(m) all the characteristic quantities τ , τW,
〈1max〉, and 〈Wmax〉 are nearly constant keeping their p = 0 val-
ues, which implies that in the parameter range p . pl the small
fraction of randomized contacts have a minor effect on failure
avalanches. However, above this threshold probability, the failure

FIG. 6. The power law exponents τ and τW of the probability distributions of the
size p(1) and duration p(W) of failure cascades as a function of the rewiring
probability p for two different Weibull exponents m. The horizontal dashed lines
represent the mean field values τ ELS and τ ELS

W of the two exponents.

dynamics rapidly changes indicated by the steep increase of both
the cutoff size 〈1max〉 and duration 〈Wmax〉 of cascades (Fig. 7), and
by the rapidly decreasing exponents τ and τw of the distributions
(Fig. 6). For high rewiring probabilities p → 1, the exponents τ and

FIG. 7. The average of the largest burst size 〈1max〉 and largest duration 〈Wmax〉

as a function of the rewiring probability p for three different values of the Weibull
exponent m.
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τw both converge to constants τ ≈ 2.3–2.4 τW ≈ 3.2–3.5, which fall
very close to their corresponding mean field values τ ELS = 5/2 and
τ ELS

W ≈ 3.8. The results show that on sufficiently randomized load
transmission networks, the statistics of the size and duration of fail-
ure cascades of the localized load sharing FBM becomes equivalent
to the mean field (ELS) universality class of the system. Gradu-
ally increasing the rewiring probability an LLS to ELS transition
emerges, which sets on at the threshold value pl and gets completed
at the upper bound pu of the rewiring probability beyond which no
significant change of the characteristic quantities occurs. Recently,
we have analyzed in detail the LLS to ELS transition of the fiber
bundle model on Watts–Strogatz networks and its dependence on
the amount of strength disorder of fibers.47 Based on the behavior of
the macroscopic strength of the bundle and the evolution of the size
distribution of cascades, we determined the rewiring probability pl

of the onset of the transition as a function of the Weibull exponent
m.47 In particular, for m = 1.5, 3, 5, the values pl ≈ 0.032, 0.08, 0.11,
and pu ≈ 0.13, 0.23, 0.52 were obtained numerically for the lower
and upper bounds, respectively. The behavior of the cascade dura-
tion, i.e., the evolution of the exponent τW and the cutoff value Wmax

of the duration distribution, revealed by the present study follows
the overall evolution of the size distribution of cascades, and hence,
it is consistent with the LLS to ELS transition.47

Comparing the curves of the exponents τ and τw at two dif-
ferent Weibull parameters m = 1.5 and m = 3 in Fig. 6, it can be
inferred that the amount of disorder of the strength of fibers plays
a crucial role in the evolution of the statistics of cascades during
the LLS to ELS transition: outside the ELS regime p < pu(m), the
exponents τ and τW are not universal, i.e., at lower disorder (higher
m) both exponents get larger, while their difference decreases. How-
ever, with increasing p, the exponents τ and τW obtained at different
Weibull exponents m converge toward the same mean field values
τ ELS and τ ELS

W , which are universal. As the strength disorder gets
reduced with increasing m, the rewiring probability pl of the onset
of the transition shifts to higher values and the upper bound pu of
the transition regime also increases. It is interesting to note that the
exponents τ and τW have a well-defined minimum at a rewiring
probability p∗(m). The result implies that the network topology
obtained at p∗ provides the highest stability where the system can
tolerate the largest cascades without collapsing. With decreasing
strength disorder (increasing m), the transition from the LLS to the
ELS universality class becomes more abrupt and the local minimum
of the exponents gets sharper and deeper compared to the limit
values at p → 1.

Figure 7 demonstrates that the average largest burst size 〈1max〉

and largest duration 〈Wmax〉 exhibit qualitatively the same evolution
as the exponents τ and τW with increasing rewiring probability p.
Both cutoffs are increasing functions of p for each Weibull expo-
nent m which implies that at higher structural randomness networks
can tolerate cascades with longer duration and larger size. However,
the size of cascades increases faster than the duration, which indi-
cates that sub-cascades are getting larger with increasing p. Note
that as the strength disorder decreases with increasing m, at low p
values, the difference of 〈1max〉 and 〈Wmax〉 gradually disappears.
This shows that sub-cascades typically consist of one to two break-
ing fibers in this parameter range, however, with increasing rewiring
probability the difference between the two curves gets again higher.

Of course, at a given parameter set, avalanches of longer dura-
tion have a larger size but the details of the relation of the two
quantities can depend both on the network structure of the load
transmitting connections and the amount of strength disorder of
nodes (fibers). To quantify this relation, we determined the average
size of cascades 〈1〉 with a fixed duration W. Figure 8(a) demon-
strates for the Weibull parameter m = 3 that at each value of the
rewiring probability p, the average cascade size 〈1〉 increases as a
power law of the duration,

〈1〉 ∼ Wβ . (8)

However, the exponent β depends on the value of p. At low p in
the range p < pl, where the failure dynamics is close to the LLS
class, the cascade size slowly increases with the duration so that
β = 1.3 ± 0.08 was obtained by fitting. For larger p values p > pl

where long range connections start to dominate the spreading of
cascades, a crossover can be observed: small avalanches, which are
not affected by the rewired contacts, are still characterized by the
LLS value of β . However, beyond a characteristic duration Wc, a
steeper increase sets on with a higher exponent, which gradually
increases with the rewiring probability. In the limit of p → 1, we
obtained β = 1.78 ± 0.12, which falls close to the corresponding
mean field value βELS ≈ 2. For lower strength disorder of fibers
m = 5 in Fig. 8(b) qualitatively, the same behavior is obtained,
however, similar to the exponents of cascade size τ and dura-
tion τW, the value of β proved to be universal only in the mean
field limit attained in the range of the rewiring probability p > pu.
On networks obtained at lower structural randomness p < pu, the
exponent β depends on the amount of strength disorder of fibers
controlled by m. In particular, in Fig. 8(b), we obtained β = 1.77
for p = 1, while in the LLS universality class p = 0, the exponent is
β = 1.1 significantly lower than for m = 3. To make the effect of
the amount of strength disorder more transparent, we determined
the exponent β by the careful fitting of the 〈1〉(W) curves at each p
value. The results are summarized in Fig. 8(c) where β is presented
as a function of p for four different values of the Weibull exponent
m. Note that the overall behavior of the curves is consistent with the
outcomes of the analysis of the probability distributions of the size
and duration of cascades. In the mean field limit p > pu(m) the value
of β is practically the same for all m within the error bars σβ ≈ 0.1.
As the strength disorder gets reduced by increasing m, the LLS value
of β decreases and tends to 1, which confirms that at low strength,
disorder sub-cascades consist of mainly single breaking fibers so that
the cascade size increases linearly with the duration.

Of course, the three exponents β , τ , and τW of the cascade
size and duration are not independent, one can easily show that the
scaling relation

β =
τW − 1

τ − 1
(9)

must hold among them.18,48 As an example, Fig. 8(d) presents the
two sides of Eq. (9) as a function of the rewiring probability p for
m = 3. A reasonable agreement is obtained between the two curves
which confirms the consistency of the numerical results. Our com-
puter simulations revealed that the scaling relation Eq. (9) is valid
at any amount of strength disorder controlled by the Weibull expo-
nent m and on all network topologies. Note that in the limit of very
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FIG. 8. The average size of cascades 〈1〉 as a function of their durationW for several values of the rewiring probability p at the disorder exponentsm = 3 (a) andm = 5 (b).
The continuous straight lines represent power laws of exponents 1.3, 1.78 and 1.1, 1.77 in (a) and (b), respectively. (c) The exponent β as a function of the rewiring probability
for several values of the Weibull exponent m. (d) Test of the scaling relation Eq. (9) for m = 3. A reasonable agreement can be observed between β and the value of the
expression (τW − 1)/(τ − 1).

low disorder m � 1 as β tends to 1 in the LLS universality class, the
exponents of the cascade size and duration must approach the same
limit values so that τW = τ follows for p < pl(m).

IV. TEMPORAL PROFILE OF SPREADING CASCADES

Cascades evolve through a sequence of sub-cascades whose size
1s can have strong fluctuations. This is illustrated in Fig. 9 which
presents the temporal evolution 1s(u) (u = 1, . . . , W) of three cas-
cades with a fixed duration W = 57 on a network at the rewiring
probability p = 0.5. It can be observed that the temporal profile
1s(u) of single cascades is a stochastic curve; however, simulations
revealed that averaging over cascades of a fixed duration the average
profile 〈1s(u)〉 has a well-defined functional form which is parabolic
(see Fig. 9).

To give a quantitative characterization of the temporal evo-
lution of cascades on different network topologies, we analyzed
profiles 〈1s(u, W)〉 of cascades averaged over a large number of

events of the same duration W at a given parameter set of the fiber
bundle. Figure 10 compares cascade profiles of the same duration W
at different values of the rewiring probability p. It can be observed
that as p increases, the size of sub-cascades increases so that cascades
grow to larger sizes 1 at the same value of W. The result implies that
due to the presence of long range connections cascades of the same
duration spread over a larger area in the bundle without becoming
unstable. Note that at all p values and durations W, the profiles have
a parabolic shape with a certain degree of right handed asymmetry.
Since the size of sub-cascades is the rate of increase of the cascade
size, the asymmetry indicates that the spreading of failure cascades
starts slowly then accelerates and eventually stops suddenly. It can be
inferred from Fig. 10 that the highest asymmetry is obtained on the
regular square lattice p = 0, which then gets reduced with increasing
rewiring probability p. It is important to emphasize that the asym-
metry prevails even in the limit p → 1, when the load transmission
network becomes completely randomized. The degree of asymme-
try proved to be characteristic of the structure of the network in
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FIG. 9. The evolution of single cascades at the rewiring probability p = 0.5. The
size of sub-cascades1s(u) is presented for three cascades of durationW = 57
in such a way that the time variable u is rescaled withW . The dashed line presents
the temporal profile averaged over 150 events of the same duration.

the sense that at a given rewiring probability p, it has the same
value for all the cascades irrespective of the duration W. This is
demonstrated in Fig. 11 for m = 1.5, where rescaling the cascade
profiles 〈1s(u, W)〉 with an appropriate power α of W and the pro-
files of different durations W collapse on top of each other. The good
quality data collapse implies the validity of the scaling structure of
profiles,

〈1s(u, W)〉 = Wα f(u/W), (10)

where both the exponent α and the scaling function f(x) depend
on the network structure p. The value of α falls between 0.65 and
1 in the figure. The scaling analysis makes it even more transpar-
ent that cascade profiles of random graphs p = 1 are not symmetric
[see Fig. 11(d)] in spite of the symmetric parabolic pulse shape of
avalanches in equal load sharing fiber bundles.13,49

In order to give a quantitative characterization of the evolution
of the degree of asymmetry with the rewiring probability p, we fitted
the scaling function f(x) with the expression

f(x) ∼ [x(1 − x)]α [1 − a(x − 1/2)] , (11)

which has been proposed in Ref. 18 based on the experimental inves-
tigation of interfacial crack propagation. Note that the parameter α

is the same as in Eq. (10). The degree of anisotropy is controlled by
the value of the parameter a in such a way that a = 0 means sym-
metry, while negative and positive values characterize right and left
handed asymmetry, respectively. It can be observed in Fig. 11 that
Eq. (11) provides a good quality fit of the scaling functions f(x) at all
p values.

FIG. 10. Temporal profile of failure cascades 〈1s(u,W)〉 obtained by averaging
over a large number of cascades of the same durationW for the Weibull exponent
m = 1.5. Profiles of the sameW are compared at different values of the rewiring
probability p for severalW : (a) 20, (b) 30, (c) 40, and (d) 50.

FIG. 11. Scaling analysis of the temporal profile of cascades at fixed values of the
rewiring probability p: (a) 0, (b) 0.005, (c) 0.05, and (d) 1 for m = 1.5. Rescaling
the profiles 〈1s(u,W)〉 with an appropriate power α ofW , cascades of different
durations can be collapsed on the top of each other. The vertical dashed lines
indicate the position of the middle point of the interval [0, 1]. The continuous bold
lines were obtained by fitting the scaling function with Eq. (11).
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FIG. 12. Shape parameters of avalanche profiles α (left axis) and a (right axis)
for m = 1.5.

Figure 12 presents how the exponent α and the asymmetry
parameter a depend on the rewiring probability p for the Weibull
exponent m = 1.5. The value of α controls how flat the profile is
around its maximum and how rounded the curve is around the
ending points u/W = 0 and u/W = 1 without any effect on the
symmetry. The closer α is to 1, the more parabolic the profile shape
is.13,18,49 Moreover, the parameter a mainly affects the position of the
maximum without modifying the overall shape of the profile curves.
It can be observed in the figure that the exponent α increases starting
from the vicinity of 0.65 at p = 0 to 1 at p = 1, which shows that the
cascade profile approaches the simple parabolic form of ELS bun-
dles as the load transmission network gets randomized. However,
the asymmetry parameter increases from a ≈ −1.0 to a ≈ −0.4 with
increasing p so that even at p = 1, it remains negative, indicating
that some degree of asymmetry prevails on the fully random net-
work. Note that the evolution of α with the rewiring probability p
is qualitatively similar to the behavior of the other exponents β , τ ,
and τW showing the LLS to ELS transition. However, the value of
the asymmetry parameter a remains constant keeping its LLS value
approximately up to the upper bound of the transition regime pu and
then it continuously increases until p = 1 is reached. The scaling law
equation (10) implies that the average avalanche size 〈1〉 increases
as a power law of the duration 〈1〉 ∼ W1+α , as it has been expressed
in Eq. (8). It follows that the two exponents α and β have the simple
relation β = 1 + α. Comparing the values of α and β obtained from
the scaling function in Eq. (11) and by fitting the average cascade
size as a function of the duration in Fig. 8, respectively, the above
relation holds to a good precision.

The scaling analysis of the average temporal profile of fail-
ure cascades requires a large number of cascades at relatively high
durations. However, as the strength disorder of fibers is decreased
by increasing the Weibull exponent m, the distribution of both the
size and the duration of cascades becomes steeper, which drastically

reduces the number of large cascades of long duration, and, hence, it
prevents the profile analysis at low disorder. This is the reason why
results on cascade profiles are presented only for a single m value in
the range of high disorder.

V. DISCUSSION AND CONCLUSIONS

We presented a detailed study of the spreading dynamics of
failure cascades in the fiber bundle model focusing on the role of
the structure of the underlying load transmission network and the
amount of disorder of fibers’ strength. Under a slowly increasing
external load, fibers fail when the local load exceeds their strength,
which is a random variable sampled from a Weibull distribution.
After a failure event, the load dropped by the broken fiber is redis-
tributed locally over its intact nearest neighbors along the links of the
network of load transmitting connections. The network is generated
starting from a square lattice of fibers, which is then rewired using
the Watts–Strogatz rewiring technique. Varying the rewiring prob-
ability between 0 and 1, the structure of the network is tuned from
completely regular to random. In the model, single breaking events
trigger failure cascades that spread on the network in a sequence
of breaking and load redistribution steps until they either stop or
destroy the entire system. We characterized single cascades by their
duration and size, which are the total number of breaking-load shar-
ing steps and the total number of fibers breaking in the cascade,
respectively.

We demonstrated that the network structure controlled by the
rewiring probability has a strong effect on the statistics of cascades:
on the regular lattice p = 0, both duration W and size 1 of cascades
have power law distributions with relatively high exponents τW, τ
and low cutoff values. The result indicates that in the presence of a
strong load concentration large cascades of long duration very rarely
occur. Reducing the amount of strength disorder by increasing the
Weibull exponent m, both exponents τW and τ increase and they
tend toward a common limit value.

The rewiring process introduces long range random connec-
tions in the load transmitting network and, hence, reduces the
local concentration of load inside the bundle. Consequently, as the
rewiring probability p increases, the cascading dynamics of the fail-
ure of the bundle undergoes a transition from the localized to the
mean field universality class of FBMs. Simulations revealed that the
transition sets on at a threshold probability pl below which all quan-
tities keep their LLS values of p = 0. There exists a second threshold
pu of the rewiring probability above which no further changes of the
cascade dynamics can be pointed out setting the upper bound of the
transition regime. Our results confirm the former findings of Ref. 31
that on complex networks, the behavior of the localized load sharing
fiber bundle model becomes identical to the equal load sharing one
at a sufficiently high structural randomness. However, we demon-
strated that on the micro-level, the transition is accompanied by a
complex evolution of the statistical and dynamical features of failure
cascades: the exponents of size τ and duration τw of the cascade both
decrease with the rewiring probability and evolve toward their cor-
responding mean field values, which are independent of the amount
of strength disorder of fibers. Cascades of longer duration have a
larger size described by a power law relation with an exponent β .

Chaos 32, 063121 (2022); doi: 10.1063/5.0089634 32, 063121-9

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

We showed that at any value of the rewiring probability, the three
exponents τ , τW, and β obey a scaling relation with a reasonable
precision.

Failure cascades always start from a single failing node and
gradually spread as the load is redistributed through the transmis-
sion network. We demonstrated that at all rewiring probabilities, the
average temporal profile of cascades is a distorted parabola with a
right handed asymmetry, which implies that cascades start slowly,
then accelerate, and stop suddenly. Simulations revealed that as the
network gets more and more randomized, cascades of the same
duration grow to larger sizes and the degree of asymmetry of their
profile decreases. We showed that at a given network topology p,
avalanche profiles of different durations can be collapsed on top
of each other applying a scaling transformation. The result con-
firms that the degree of asymmetry is characteristic of the network
structure. In the limit of completely random networks, the pro-
files approach the perfectly symmetric parabolic shape of mean field
cascades; however, some asymmetry prevailed. The general scaling
relation of the exponent α providing the best collapse of profiles
of different durations and the exponent β describing the duration
dependence of the cascade size was found to hold to a reasonable
precision.

Recently, the average temporal profile of spreading cascades
has been analyzed on complex networks by analytical and numer-
ical means in Ref. 9. Using maximally random networks (generated,
e.g., by the configuration model50), it was shown that asymmetric
avalanche profiles typically emerge when the degree distribution is
fat-tailed. The asymmetry was found to be left handed, predicting
a rapid start and a gradually diminishing deceleration toward stop-
ping. The outcomes of our fiber bundle study may be compared to
these findings only in the limit of p → 1. We conjecture that the
right handed asymmetry we observe can be attributed to the dif-
ferent degree distributions and to the way of load redistribution.
In particular, we think one of the reasons why deviations from the
mean field behavior occur even at p = 1 is that in the mean field
limit of FBMs all fibers interact with all other ones. However, in
our system, the average number of interacting partners is fixed to 4
by the rewiring algorithm. Although randomization of the network
gradually reduces the locality of load sharing, due to the low num-
ber of interacting partners deviations from ELS still remain relevant.
The way of load sharing in FBMs, including the constraint of load
conservation, may be responsible for the right handed asymmetry
of avalanche profiles, i.e., as avalanches propagate the accumula-
tion of load along their front introduces a certain memory effect
in the stochastic growth process similar to the mechanism pro-
posed in Ref. 51. Calculations to clarify these important issues are
in progress.

In our present study, cascades and sub-cascades were charac-
terized by their size defined as the number of nodes failed during
them. Depending on the specific properties of the system under
consideration, other quantities may also be interesting to quan-
tify cascades, e.g., in the context of the fracture of heterogeneous
materials, the energy realized during an event is easier to measure.
Although for equal load sharing the size and energy of cascades are
proportional to each other, this is not the case for localized load shar-
ing where novel behavior can be expected. Results in this direction
will be presented in a forthcoming publication.
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