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We study the failure process offiber bundles on complex networks focusing on the effect of thedegree of disorder
of fibers' strength on the transition from localized to mean field behaviour. Starting from a regular square lattice
we apply the Watts-Strogatz rewiring technique to introduce long range random connections in the load trans-
mission network and analyze how the ultimate strength of the bundle and the statistics of the size of failure cas-
cades change when the rewiring probability is gradually increased. Our calculations revealed that the degree of
strength disorder of nodes of the network has a substantial effect on the localized tomean field transition. In par-
ticular, we show that the transition sets on at a finite value of the rewiring probability, which shifts to higher
values as the degree of disorder is reduced. The transition is limited to a well defined range of disorder, so that
there exists a threshold disorder of nodes' strength below which the randomization of the network structure
does not provide any improvement neither of the overall load bearing capacity nor of the cascade tolerance of
the system. At low strength disorder the fully random network is the most stable one, while at high disorder
best cascade tolerance is obtained at a lower structural randomness. Based on the interplay of the network struc-
ture and strength disorder we construct an analytical argument which provides a reasonable description of the
numerical findings.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Load redistribution following local damage often drives the cascad-
ing failure of connected elements in complex systems [1,2]. From crack-
ling bursts accompanying materials breakdown, through the failure
avalanches of transportation and communication networks, to the cas-
cading blackouts of electric transmission grids, the statistical features
of failure cascades, and the overall performance of the damaged system
strongly depend on the structure of the underlying network of load
transmitting connections between elements of the system [3–10]. The
interplay of the cascading dynamics and of the network topology has re-
cently been studied using discrete models on various types of complex
networks. In these approaches either the nodes [5,8] or the links [11]
of the network are assumed to undergo a degradation process accompa-
nied by a mechanism of load rearrangement on the intact elements
which can give rise to cascades of failure events. Among these ap-
proaches the so-called fiber bundle model (FBM), widely used to
studymaterials breakdownphenomena [12–15], has proven very useful
ulty of Science and Technology,
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).
since it grasps the essential mechanisms of the intermittent failure
spreading yet being simple enough to offer analytic solutions in certain
limiting cases [12,16,17].

In the basic setup, an FBM is composed of a set of parallel fibers or-
ganized on a regular lattice [13,14,18]. Under a slowly increasing exter-
nal load the fibers fail irreversibly when the local load on them exceeds
their strength value, which is assumed to have a certain degree of ran-
domness. Under the constraint of load conservation, the load dropped
by the failed fiber gets redistributed over the remaining intact ones. Re-
cently, two limiting cases of load sharing have been subject to intensive
investigations bothwith a high practical relevance: in case of equal load
sharing (ELS) all intact fibers receive the same fraction of load irrespec-
tive of their distance from the failed one,while for localized load sharing
(LLS) only the intact nearest neighbors share equally the load of the bro-
ken element [12,17,19–21]. In both cases the load increments can cause
further breakings so that a single broken fibermay trigger an entire cas-
cade of failure events. Due to the generality of this failure spreading
mechanism, fibers of themodel can easily be replaced by roads carrying
traffic [22,23], flow channels [24], or electric power stations [2,10,
25–27] on a high voltage transmission grid,making FBMs a basicmodel-
ling framework for cascading failure with widespread applications on
complex networks [15].
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a) b)
Fig. 1. Demonstration of the model construction. (a) The network of load transmitting
connections is obtained by rewiring a two-dimensional regular square lattice with peri-
odic boundary connections in both directions. The rewiring introduces long range ran-
domized connections, which broadens the degree distribution of the network while
keeping the average degree fixed. (b) Fibers of the bundle are assigned to the nodes of
the network oriented perpendicular to the plane of the original lattice.
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During the past decades it has been shown that for a broad class of
the distributions of fibers' strength, FBMs exhibit universal behaviour
with two distinct universality classes according to the range of load re-
distribution: for long range load sharing (ELS class) the size of failure
cascades proved to be power law distributed with a universal exponent
5/2 [12,17,19] and the bundle has a finite asymptotic strength in the
limit of large system sizes [14,28,29]. For equal load sharing conditions
the fibers always keep the same load, no stress concentration can
arise, hence, ELS realizes the mean field limit of FBMs. Under short
range load sharing (LLS class) the distribution of cascade sizes is a signif-
icantly steeper (non universal) power law or exponential, and addition-
ally, for large system sizes the ultimate strength of the bundle tends to
zero [30–33]. Recently, LLS FBMS have been analyzed on complex net-
works where fibers were assigned to the nodes and localized load shar-
ing was realized along the links of the network [34]. Based on the
statistics of cascade sizes and on the ultimate strength of the system, it
was demonstrated for scale-free, Erdös-Rényi (ER) and Watts-Strogatz
(WS) rewired networks that LLS FBMs on complex networks fall in
the ELS universality class [34]. Later on it was shown on a ring graph
with two nearest neighbor links that adding a single random load trans-
mitting connection to each fiber, the localized load sharing FBMexhibits
ELS behaviour in terms of the size distribution of failure cascades and
global strength [35]. However, all these studies of FBMs on complex net-
works were limited to a high disorder of node strength and considered
only networkswith a high degree of randomness in their structure even
in the case when all fibers had the same degree.

Here we present a detailed numerical and analytical study of the
transition of the failure process of the fiber bundle model from the LLS
to the ELS universality class when an initially regular lattice of load
transmitting connections is gradually randomized. Starting from a
square lattice we apply the Watts-Strogatz rewiring technique [36,37]
to introduce long range random connections and study how the critical
load and strain of the bundle, furthermore, the statistics of the size of
failure cascades change when the rewiring probability is gradually in-
creased at different degrees of disorder of the strength of nodes (fibers).
Our calculations revealed that the degree of strength disorder of nodes
of the network has a substantial effect on the transition. In particular,
we show that the LLS-ELS transition sets on at a finite value of the
rewiring probability, which shifts to higher values as the degree of dis-
order is reduced. The transition is limited to a well defined range of dis-
order, i.e. there exists a threshold disorder of nodes' strength below
which the randomization of the network structure does not provide
any improvement neither of the overall load bearing capacity nor of
the cascade tolerance of the system. Based on the interplay of the net-
work structure and strength disorder we construct an analytical argu-
ment which provides a reasonable description of the numerical
findings.

2. Fiber bundle model on a rewired square lattice

To study cascading failures we consider a bundle of parallel fibers
which are assigned to the nodes of a complex network. The bundle is
subject to a slowly increasing external mechanical load parallel to the
fibers' direction. To connect the model to the mechanics of materials,
we assume that the fibers are linearly elastic up to a threshold load σth

where they break irreversibly. For simplicity, the Young modulus E
of fibers has a fixed value E = 1, however, their local strength σth is
a random variable sampled from a probability density function p(σth).
When a fiber fails its load has to be overtaken by the remaining
intact fibers. We assume localized load sharing (LLS), i.e. load is
redistributed along the links of the underlying load transmission
networks. In the following details of the model construction are
presented:

To generate the network of connections along which load is
redistributed over fibers, we start from a regular square lattice of side
length l with N = l2 fibers, and apply the Watts-Strogatz rewiring
2

technique to randomize the connections [36,37]. (A similar approach
has been used for one-dimensional FBMs in Ref. [38].) The fibers are
assigned to the nodes oriented perpendicular to the plane of the lattice.
Fig. 1 provides an overview of the model construction. On the square
lattice with periodic boundary condition in both directions, all fibers
(nodes) are connected to their four nearest neighbors, hence, initially
the degree distribution ρ(k) of fibers has the simple form

ρ kð Þ ¼ 1 for k ¼ 4,
0 otherwise:

�
ð1Þ

As to the next, each of the L = 2N initially existing connections is
rewired with a probability p which spans the interval 0 ≤ p ≤ 1. For
both ends of a rewired link a new fiber is selected randomly in the bun-
dle with the constraint that neithermultiple links nor loops are allowed
between fibers (see Fig. 1 for illustration). As a consequence, long range
randomized connections are introduced in the bundle and the degree
distributions ρ(k) broadens while the average degree of nodes ⟨k⟩, i.e.
the average number of interacting partners of fibers, remains the same
⟨k⟩ = 4. The degree distribution ρ(k) of the network is presented in
Fig. 2 for several values of the rewiring probability p. For large values
of p in the vicinity of 1, isolated fibers and small clusters of a few fibers
may occur due to rewiring. In order to exclude their effect, after the
rewiring process we identify all clusters of nodes of the bundle and
keep the largest one for further calculations.

The load bearing capacity of nodes, i.e. the threshold load σth where
fibers fail, is a random variable which is sampled from a Weibull
distribution

p σ thð Þ ¼ m
σm � 1

th

λm e � σ th=λð Þm ð2Þ

over the interval 0 ≤ σth < + ∞. Here the parameter λ sets the scale of
strength values, while m controls the shape of the distribution. The
choice of the distribution Eq. (2) has two motivations: (i) the failure
behaviour of FBMs with such a fast decaying strength distribution,
shows a high degree of robustness which has been well understood
both in the equal load sharing and localized load sharing limits on
regular square lattices [14,39]. (ii) Varying the Weibull shape
parameter m in the range m ≥ 1, the degree of strength disorder can
be controlled in the sense that increasing m reduces the width of the
distribution making the response of the bundle more brittle. This
feature of the distribution is illustrated in Fig. 3 for several
m values. It is an important characteristics of our model that the
strength σth

i and the degree ki of fibers (nodes) (i=1,…, N) are
uncorrelated.

As the load gradually increases on the bundle, initially all fibers keep
the same load, hence, the weakest fiber with the lowest breaking
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threshold breaks first. We assume that fibers have a nearest neighbor
interaction so that the load dropped by a broken fiber is equally shared
by its intact nearest neighbors on the underlying network. As a conse-
quence, the updated load of the neighboring fibers may exceed their
local breaking threshold resulting in additional breakings which are
then followed again by load redistribution. As a results of subsequent
breaking and load redistribution steps a single fiber failure can trigger
an entire cascade of failures, which stops when all the fibers receiving
load in a load redistribution step, can sustain the elevated load. This so
called localized load sharing has the consequence that fibers breaking
in an avalanche form a connected cluster on the underlying network
in such a way that on the intact fibers along the cluster perimeter a
large amount of load can accumulate.

The systemhas two sources of disorder, i.e. the stochastic strength of
fibers and the randomness of the underlying network of connections,
which are both quenched. The interplay of the two gives rise to an inho-
mogeneous stress field on the fibers, which evolves as the failure of the
system proceeds. If fiber i of load σi fails, then its ni intact nearest
neighbors all receive the load increment Δσi = σi/ni, so that the load
σj of a neighboring fiber j will have the updated value

σ j ! σ j þ Δσ i: ð3Þ

It follows that ni ≤ ki, where ki is the initial degree of the node i.
During an avalanche the external load is kept constant so that the
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Fig. 3.Weibull distribution of failure thresholds p(σth) of fibers (nodes) of the network at
different values of the exponent m. As the exponent m increases the distribution gets
narrower.
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failure spreading is solely driven by the redistribution of load through
the transmission network.

After a cascade stops the external load is further increased to pro-
voke the breaking of a single element: the load σi of each intact fiber
is incremented by the same amount δσ

σ i ! σ i þ δσ , ð4Þ

where δσ is determined as the smallest difference between the load σi

and strength σth
i of intact fibers δσ ¼ min

i
σ i

th � σ i
� �

. Ultimate failure
of the system occurs when a load increment triggers a catastrophic
cascade breaking all the intact fibers.

Simulations of the failure dynamics were performed starting from a
square lattice of size l = 400 with N = 160.000 fibers using periodic
boundary condition in both directions, which results in L = 320.000
load transmitting connections. To control the degree of strength disor-
der, the scale parameter of the Weibull distribution was fixed to λ =
1, while the shape parameter m was varied in the range 1 ≤ m ≤ 22.
For the rewiring probability p we considered 30 different values in the
interval 0 ≤ p ≤ 1. At each parameter set averages were calculated over
2000 samples.

3. Macroscopic response of fiber bundles on complex networks

Themacroscopic response of the bundle can be characterized by de-
termining the relation σ(ε) of its stress σ and strain ε. In the limit of
equal load sharing, where all fibers interact with each other and keep
the same load, this constitutive relation can be obtained analytically as.

σ ¼ Eε 1 � P Eεð Þ½ �, ð5Þ

where P(x) denotes the cumulative distribution of failure thresholds
[14,18]. Since at a given strain ε all the fibers keep the same load Eε,
the total load on the system is the product of the load of single fibers
and of the fraction of intactfibers 1 – P(Eε). Substituting theWeibull dis-
tribution of thresholds Eq. (2) we obtain the mean field constitutive
equation of our model

σ εð Þ ¼ Eεe−
Eε
λð Þm ; ð6Þ

which is presented by the inset of Fig. 4 form = 1. In a load controlled
experiment the constitutive curve can only be realized up to the
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maximum,where immediate failure occurs in the formof a catastrophic
cascade. Hence, the value σc and the position εc of the maximum define
the critical load and strain of the bundle, respectively.

In computer simulations of finite bundles of localized load sharing,
the stress σ and strain ε of the system can be obtained on any network
topology by summing up the load σi of fibers (nodes) F = ∑i=1

N σi and
dividing it by the bundle size σ = F / N and by the total number of
intact fibers ε = F / Nintact, respectively. It has been shown by means of
computer simulations that for localized load sharing on regular lattices
the constitutive curve of the bundle follows the mean field solution
Eq. (5) [20,40]. However, the response becomes more brittle in the
sense that the σ(ε) curve stops earlier at lower σc and εc closer to the
initial linear regime. Fig. 4 demonstrates that this behaviour remains
valid for all the networks considered, however, as the rewiring
probability p increases, the constitutive curves reach to higher σc and
εc values.

To have a more transparent view on the effect of the network struc-
ture on the strength of the bundle, we determined the average value of
the critical load ⟨σc⟩ and strain ⟨εc⟩ as function of the rewiring probability
p. It can be observed in the inset of Fig. 5 for theWeibull parameterm=
1 that for small values of p the randomized contacts hardly have any
effect on the strength of the bundle so that both the critical load ⟨σc⟩

and strain ⟨εc⟩ retain their original values characteristic for the square
lattice at p = 0. However, when the rewiring probability exceeds a
threshold value 0.01 ≲ p the strength starts to increase and saturates
to a limit value for completely randomized networks p → 1. Note that
in the figure the strength values are scaled with their mean field
(equal load sharing) counterparts

εELSc ¼ λ
E

1
m

� �1=m

, ð7Þ

σELS
c ¼ λ

1
m

� �1=m

e � 1=m, ð8Þ

obtained as the position and value of themaximum of the σ(ε) curve of
Eq. (6). The global strength values of ELS bundles εcELS and σ c

ELS linearly
depend on the scale parameter λ of the strength of individual fibers,
hence, the dimensionless results do not have any λ dependence. This
comparison shows that as random connections start to dominate the
load transmission among fibers, the strength of the bundle approaches
the equal load sharing limit but saturates at a lower value. The reason
0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
un

dl
e

st
re

ng
th

5 10 15 20 2 0
<k>

0.4

0.6

0.8

B
un

dl
e

st
re

ng
th

10
-3

10
-2

10
-1

1
p

< c>/ c
ELS

< c>/ c
ELS

Fig. 5. Inset: Average critical strain ⟨εc⟩ and load ⟨σc⟩ of the network scaledwith their mean
field counterparts ε c

ELS and σ c
ELS as function of the rewiring probability p for the Weibull

parameter m = 1 of the failure thresholds. Main panel: The strength values ⟨εc⟩ and ⟨σc⟩

obtained for p = 1 as function of the average number of neighbors in the range 2 ≤ ⟨k⟩ ≤
30. The legend is provided in the inset for both figures.

4

is that the average number of interacting partners of fibers is fixed to
⟨k⟩ = 4 which still gives rise to a significant stress concentration on
the network, and hence, reduces the fracture strength of the bundle
compared to the mean field limit. To support this argument we per-
formed computer simulations on random graphs corresponding to the
p=1 limit of our systemwith the same number of nodes N as the orig-
inal square lattice varying the average number of neighbors ⟨k⟩ in a
broad range. Fig. 5 demonstrates that increasing the average number
of interacting partners ⟨k⟩ of fibers in a completely random network
p = 1 the strength values ⟨σc⟩ and ⟨εc⟩ converge to their mean field
counterparts as expected.

4. Size distribution of failure cascades

The microscopic mechanism of the failure of the system is the cas-
cading failure of nodes (fibers) triggered by single breaking events as
a consequence of external load increments. Our simulations revealed
that the structure of the load transmission network plays an essential
role in the growth of avalancheswhich in turn also determines themac-
roscopic behaviour of the bundle. A cascade always starts from a single
failing node and spreads over the transmission network, which is dem-
onstrated in Fig. 6 for a network at the rewiring probability p=0.5with
the Weibull shape parameterm= 1 of strength values. In the figure all
fibers (nodes) which receive load from breaking fibers are indicated by
black color, and among them those oneswhich suffer breaking are high-
lighted by colors different from black. Fibers breaking as a consequence
of the same load redistribution step, are represented by the same color.
Starting from the externally imposed fiber breaking in the top of the fig-
ure, one can easily follow the development of the cascade through the
consecutive colors. Note that the cascade forms a connected cluster of
broken fibers on the network, however, fibers breaking in the same
sub-cascade can be far from each other. The number of fibers breaking
in the cascade defines the cascade size Δ.

To characterize the statistics of failure cascades we determined the
probability distribution of their size p(Δ),which proved to have a strong
dependence on the network topology of load transmitting connections.
It can be observed in Fig. 7 for theWeibull parameterm=1 that on the
Start

End

Fig. 6. Spreading of a failure cascade on the network of load sharing connections at p=0.5
with Weibull distributed failure thresholds atm = 1. The cascade starts and ends with a
single breaking indicated by the arrows. All fibers of the network which receive load
from broken fibers are indicated by black circles, and among them the ones which break
as a consequence of load sharing are highlighted by colors different from black. For clarity,
the circles representing broken fibers have also a larger size. Fibers breaking in the same
load redistribution step have the same color. The cascade in the example has the size
Δ=87, whichwas generated in 24 load redistribution steps. For clarity, nodes of the net-
workwhich do not participate in the cascade are not shown. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this
article.)
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regular square lattice (p = 0) where strong spatial localization of load
occurs around failed regions, the distribution p(Δ) can be approximated
as a power law

p Δð Þ � Δ � τ , ð9Þ

which is followed by a finite size cutoff. The value of the exponent is
rather high τ=3.4 ± 0.1 in agreement with former studies of the fiber
bundle model [20,32,40]. The rapidly decreasing distribution and the
low cutoff burst size Δmax clearly show that cascades are typically
small compared to the system size N. Due to the strong localization
large avalanches would lead to immediate collapse of the bundle on
the regular lattice. However, increasing the fraction of long range
connections by increasing the rewiring probability p, the stress
localization gets gradually reduced, hence, the system can tolerate
larger and larger failure cascades without suffering catastrophic
collapse. As a consequence, the cutoff burst size Δmax increases and
the distribution p(Δ) exhibits a crossover to a second power law
regime with a lower exponent. The smaller value of τ shows the
growing fraction of large size cascades in the failure dynamics of the
system (see Fig. 7).

Of course, the crossover burst size Δc, which separates the two
power law regimes, depends on the rewiring probability, i.e. Δc

gradually shifts to smaller values with increasing p in such a way that
in the limit p → 1 practically a single power law remains with a
significantly lower exponent than that of the original square lattice at
p = 0. To characterize this evolution of p(Δ) we determined the
average size of the largest avalanche ⟨Δmax⟩ and the power law
exponent τ of the regime of large avalanches as function of the
rewiring probability p. It can be observed in Fig. 8 for the Weibull
parameter m = 1 that up to the rewiring probability pl ≈ 0.01 the
cutoff cascade size ⟨Δmax⟩ is nearly constant, although the exponent τ
suffered some change. This behaviour implies that the small fraction
of randomized contacts has a minor effect on the cascading failure
dynamics in this parameter range p ≲ 0.01. However, above this
threshold probability a rapid change of the cascade size distribution
sets on indicated by the steep increase of ⟨Δmax⟩ and decrease of the
exponent τ. For high values of the rewiring probability p → 1, the
exponent τ converges to a constant τ ≈ 2.3, which falls very close to
the mean field burst size exponent of FBMs τELS = 5/2 [12,19]. The
result indicates that on sufficiently randomized load transmission
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networks the statistics of failure cascades of the localized load sharing
FBM becomes equivalent to the mean field universality class of the sys-
tem in agreementwith the behaviour of themacroscopic strength of the
bundle. The result is consistent with Ref. [34] where FBMs were ana-
lyzed on Watts-Strogatz networks in the range of high rewiring proba-
bilities p ≥ 0.2 recovering the mean field behaviour.

It is interesting to note that in Fig. 8 the average largest cascade size
⟨Δmax⟩ has a maximum around the rewiring probability p⁎ ≈ 0.1 which
practically coincides with the position of the minimum value of the
exponent τ. This behaviour indicates that there exists a network
topology determined by p⁎ where the network can tolerate the largest
cascades with a considerable frequency. The reason is that increasing
the rewiring probability the growing randomness of the network
increases the perimeter of the failed clusters, hence, reducing the load
concentration on it. This mechanism stabilizes the system in the sense
that cascades can reach larger sizes without becoming instable
destroying the system. However, at higher p a counter effect occurs
that low degree fibers appear on the network with a growing fraction,
which increases the load concentration in their vicinity and makes the
system more vulnerable to cascades. The value p⁎ provides the
optimum for the cascade tolerance of the system.
5. Effect of the degree of threshold disorder on the LLS-ELS transi-
tion

Wecarried out a large amount of simulations of the failure process of
the network of fibers at several values of theWeibull exponentm vary-
ing the degree of strength disorder in a broad range. These calculations
revealed that the LLS to ELS transition has a high complexity as the net-
work structure is gradually changedwhere the degree of strength disor-
der of nodes plays a crucial role. Fig. 9(a) demonstrates for the average
critical load ⟨σc⟩ that as the strength disorder is reduced by increasingm,
the onset of the transition, i.e. the rewiring probability plwhere the first
significant deviation occurs from the LLS result of the regular lattice,
shifts to higher values. For instance, for m = 7 the transition starts at
about pl ≈ 0.1, which is an order of magnitude higher than the
corresponding value pl ≈ 0.01 obtained at m = 1. The transition is
completed at a rewiring probability pu beyond which the bundle
strength practically does not change. With decreasing strength
disorder the value of pu also increases and tends towards 1 in such a
way that the transition regime shrinks. Note that the asymptotic
strength ⟨σc⟩ (p = 1) decreases with increasing m compared to its
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mean field counterpart σ c
ELS, indicating that at lower threshold disorder

randomization of the network structure provides less and less
improvement of the overall load bearing capacity of the system. It is
interesting to note that at the lowest disorders considered, starting
from m = 10, the ⟨σc⟩ (p) curves proved to be non-monotonous, i.e.
for m = 10, 15 the onset of the increase of the ultimate strength of
the system is preceded by a local minimum. Additionally, for m = 22
the limit value of the strength attained at p→ 1 falls below the strength
of the original square lattice. The result implies that when the strength
of nodes is sampled froma sufficiently narrow interval the rewiringpro-
cess gives rise to a reduction of the bundle strength at any rewiring
probability.

The analysis of the statistics of cascade size revealed a similar effect
of the strength disorder of fibers on the LLS-ELS transition of the failure
process: It can be observed in Fig. 9(b) for the average size of the largest
cascade ⟨Δmax⟩ that as the degree of threshold disorder gets reduced
with increasing m the value of ⟨Δmax⟩ remains constant keeping its
p = 0 value for a broader and broader range of the rewiring
probability p. The estimated lower bounds pl of the transition regime
are consistent in Fig. 9(a) and (b) for the macroscopic and microscopic
quantities showing that pl increases with decreasing threshold
disorder. Note that the ⟨Δmax⟩ (p) curves rise sharper than the bundle
strength ⟨σc⟩ (p) making the transition regime more transparent. It
can be expected that at the onset of the LLS-ELS transition the value of
Δmax has large fluctuations. To quantify this Fig. 9(c) presents the
relative scatter of Δmax, i.e. the ratio of its standard deviation σΔmax

and average ⟨Δmax⟩. For each degree of disorder m, a sharp maximum
can be observed whose position provides a good measure of pl. The
6

vertical dashed lines highlight for a few Weibull exponents m that
indeed the maximum of the relative scatter of Δmax well coincides
with the onset of the sharp rise of ⟨Δmax⟩ (p) in Fig. 9(b).

It is important to note that as the strength disorder decreases the po-
sition p⁎ of the maximum of ⟨Δmax⟩ where the network tolerates the
largest avalanches, shifts to higher values. Additionally, the maximum
gradually decreases and eventually disappears around m ≈ 4, where
the ⟨Δmax (p)⟩ curves become monotonous. It follows that for threshold
disorder in the range m > 4 the fully random graph provides the
highest tolerance of cascades. In agreement with the behaviour of the
ultimate strength of the bundle, at lower strength disorder of the
nodes, the randomization of the network structure provides less and
less improvement compared to the LLS limit of regular lattices.

For each degree of disorder m the size distribution of cascades p(Δ)
goes over the same evolution as form= 1 in Fig. 7: below the rewiring
probability pl the cascade size distribution practically remains the same
as on the original regular lattice at p=0. The second power law regime
with a lower exponent emerges for networks with p ≥ pl accompanied
by the growth of the cutoff cascade size ⟨Δmax⟩ and by the gradual
decrease of the crossover cascade size Δc. When p exceeds pu, the
transition gets completed and a single power law remains of p(Δ).

5.1. Rewiring probability of the onset of the transition

In order to understand how the transition emerges from LLS to ELS
with the rewiring probability p at different degrees of disorder m, we
construct an analytical argument based on the changing structure of
the underlying load transmission network. On the original square lattice
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of fibers, localized load sharing dynamics leads to early failure of the en-
tire bundle due to the strong stress concentration on the perimeter of
failed clusters [32,40,41]. In the last stable configuration of the bundle
failed clusters are very small compared to the system size so that the
majority of fibers break in the last catastrophic cascade. Adding ran-
domized long range connections leads to the reduction of the local
stress concentration by increasing the perimeter of the growing failed
cluster. As a consequence, the system can tolerate larger cascades and
has a higher overall load bearing capacity.

At a given value of p the average number of rewired connections can
be estimated as 2Np since each of the initial 2N links is rewired with
probability p. When p is low only a very small fraction of fibers is af-
fected in the bundle by the rewiring either by having a removed nearest
neighbor link or by getting a newly established long range contact. So it
is reasonable to assume that at low p values the majority of spreading
cascades have a high chance to avoid fibers with rewired links so that
cascades remain small following the same statistics as on the original
square lattice at p = 0. Those cascades which involve fibers with
rewired connectionsmay grow to larger sizes resulting in a statistics dif-
ferent from the one of the small avalanches. This mechanism leads to
the emergence of a crossover in the distribution of the size of cascades
presented in Fig. 7.

To estimate the crossover burst size Δc, it is instructive to determine
the probability that a randomly selected node of the network is affected
by rewiring. The probability that none of the 4 nearest neighbor
connections is rewired for a fiber is (1 − p)4, while the probability
that it does not get connected to any new fiber can be estimated as
exp(−4p) for large N [42]. Hence, the probability pr that a node is
affected by rewiring can be cast into the form

pr ¼ 1 � 1 � pð Þ4e � 4p: ð10Þ

We assume that crossover occurs at a cascade size Δc above which
cascades involve on average at least one fiber affected by the rewiring
process. Hence, the relation

Δcpr pð Þ≈1 ð11Þ

follows between Δc and the rewiring probability p, from which we
obtain

Δc≈
1

pr pð Þ : ð12Þ

Note that for p → 0 the crossover avalanche size diverges Δc → ∞,
while it tends to 1 for p → 1.

It follows from the above arguments that at very low rewiring prob-
abilities p≪ 1 the crossover cascade size is larger than the average larg-
est avalanche ⟨Δmax⟩ (p = 0) on the original regular lattice at p = 0. It
has the consequence that the dynamics and statistics of stable
cascades is practically not affected by the rewiring in this p range, no
crossover occurs, so that the distributions of the cascade size remain
practically the same as on the square lattice (see Fig. 7). Crossover of
the distributions emerges for those p values where the condition

〈Δmax〉 p ¼ 0,mð Þ>Δc pð Þ ð13Þ

holds. Note that ⟨Δmax⟩ of the original lattice p= 0 also depends on the
strength disorder m. This first occurs at the lower bound pl of the
transition regime

〈Δmax〉 p ¼ 0,mð Þ ¼ Δc plð Þ ð14Þ

from which pl can be obtained as a function of the degree of strength
disorder pl = pl(m). In the regime p > pl(m) the crossover cascade
size separating the two power law regimes of different exponents can
be approximated by Eq. (12). The smallest possible value of Δc we
could identify in our numerical measurements is Δc ≈ 1–3, from
7

which the upper bound of the crossover pu can be determined. Further
increasing p above pu no qualitative change of the failure process
occurs so that the statistics of the size of cascades remains the same.

It follows from the above arguments that the dependence of the LLS-
ELS transition on the degree of strength disorder of the fibers (nodes)
originates from the disorder dependence of the cascade activity of the
system on the unperturbed regular lattice. For each Weibull exponent
m we estimated numerically the crossover point Δc of the cascade size
distributions p(Δ) by determining the value of Δ where the two fitted
straight lines of the two power law regimes of the distributions
cross each other at each rewiring probability p. It can be observed in
Fig. 10 that the analytical curve of Δc(p) obtained from Eq. (12)
underestimates the numerical values, however, its functional form
provides a reasonable description of the numerical findings. In Fig. 10
the rewiring probability of the lower pl and upper pu bounds of the
transition at a given disorder m can be identified as the p values
where the crossover first occurs, and where Δc becomes constant,
respectively. To obtain a more precise estimate of the transition
regime, we solved numerically Eq. (14) for pl substituting the value of
the average largest cascade size 〈Δmax〉(p = 0) at each m. This semi-
analytical value of pl is compared in Fig. 9(d) to the numerical one
obtained as the position of the maximum of the relative scatter of
Δmax in Fig. 9(c). The analytical results again underestimate the
numerical ones but they have the same functional form. The value of
pu we can estimate from the numerical results falls between 0.2 and 1.
5.2. Failure triggered by low degree fibers

Our simulations revealed that the competition of two mechanisms
determine the behaviour of the loaded network both on the micro-
and macro-scales. At higher rewiring probabilities p the growing ran-
domness of the network reduces the local load concentration in the sys-
tem. This mechanism can substantially increase the cascade tolerance
and the overall load bearing capacity of the network especially at high
disorder of the strength of nodes, see Fig. 9(a, b). However, as the degree
distribution ρ(k) broadens with increasing rewiring probability p, low
degree nodes appear which have the counter effect of increasing the
local load concentration when they fail. This effect becomes crucial at
low node strength disorder, where the failure of a low degree node
can easily trigger a catastrophic avalanche of failure events. In order to
quantify this mechanism we characterize the degree of strength disor-
der of nodes by estimating the average of the smallest 〈σth

min〉 and
largest 〈σth

max〉 failure thresholds in the bundle. Among N independent
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random numbers sampled from the same probability distribution P, the
average of the smallest and largest values can be obtained as

〈σmin
th 〉 ¼ P � 1 1

N þ 1

� �
, and 〈σmax

th 〉 ¼ P � 1 1 � 1
N þ 1

� �
, ð15Þ

where P−1 denotes the inverse of the cumulative distribution [43].
Substituting the Weibull distribution Eq. (2), the limit thresholds in a
bundle of N fibers can be cast into the form

〈σmin
th 〉 ¼ λ

1
N

� �1=m

, and 〈σmax
th 〉 ¼ λ ln Nð Þ1=m: ð16Þ

The ratio r of the two values provides a measure of the degree of
threshold disorder of the nodes

r ¼ 〈σmax
th 〉=〈σmin

th 〉 ¼ N ln Nð Þ1=m: ð17Þ

For the stability of the bundle the worst case is when a node of
degree k = 1 has the smallest failure threshold σth

min, since at failure it
will double the load on its neighbor right at the beginning of the
failure process. This load sharing will definitely result in failure of the
neighbor if the elevated load 2σth

min is greater than the largest
threshold σth

max in the bundle so that the condition follows

2σmin
th >σmax

th : ð18Þ

Since this secondary failure event gives rise to a large load increment
on its own neighbors, it is reasonable to assume that the cascade does
not stop anymore and it becomes catastrophic. Eq. (18) implies that
this mechanism determines the response of the bundle only when the
strength distribution is sufficiently narrow r<2, and the rewiring prob-
ability p is sufficiently high to have a finite fraction of nodes of degree
k = 1. Using the expression of r Eq. (17), the condition Eq. (18) can be
cast into a condition for the Weibull shape parameter

m>
ln N ln Nð Þ

ln 2
, ð19Þ

which yields m > 20.9 for the setup of our fiber bundle. It follows that
the highestm value we consideredm= 22 fulfills the condition so that
the ultimate failure of the network at thism should be dominantly trig-
gered by fibers of degree 1 at sufficiently high rewiring probabilities. To
support the above arguments Fig. 11 presents the average number of
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intact neighbors ⟨kt⟩ of fibers the failure of which initiated the
catastrophic cascade along with its original degree 〈ktorig〉. It can be
observed that both quantities monotonically decrease with increasing
rewiring probability p, i.e. as the degree distribution of nodes gets
broader with increasing p the triggering node has a lower and lower
degree. At high strength disorder (low Weibull exponent m) the
original 〈ktorig〉 and final degrees ⟨kt⟩ of triggering fibers have a larger
difference, however, as the strength disorder gets reduced with
increasing m both curves shift to lower values in such a way that their
difference gets also smaller. It is important to emphasize that the
〈ktorig〉 and ⟨kt⟩ curves tend to 1, which confirms that at low strength
disorder the lowest degree nodes make the system vulnerable to
cascading failure triggering the catastrophic breakdown of the system.
The most remarkable outcome of these calculations is that the LLS-ELS
transition is limited to a disorder range of the strength of nodes. At
too low disorder rewiring makes the system more vulnerable to cas-
cadeswhich prevents any improvement of the strength and cascade tol-
erance of the system. For Weibull exponents fulfilling the condition
Eq. (19) no LLS-ELS transition emerges.

6. Discussion and conclusions

We presented a theoretical study of the evolution of the failure dy-
namics of the fiber bundle model as the underlying network of load
transmitting connections is gradually changed from a regular lattice to
a random network. A complex network of fibers was constructed by
randomizing a regular square lattice using the Watts-Strogatz rewiring
technique. Fibers assigned to the nodes of the network are assumed to
have a finite load bearing capacity which is a random variable. Initially
all fibers are intact and their state is switched to failed when the local
load on them exceeds their strength. The systemwas subject to a slowly
increasing external load by adding the same load increment to each in-
tact fiber in such a way that the failure of a single fiber is provoked. The
load of failed fibers is transmitted to their intact nearest neighbors
which may trigger an entire cascade of failure events under the con-
straint of load conservation.

Gradually increasing the rewiring probability, we showed that the
changing network structure gives rise to a transition from the localized
to themean field behaviour of failure processes accompanied by a com-
plex evolution both on themacro- andmicro-scales. The first deviations
from the LLS behaviour of the regular lattice appear at a threshold prob-
ability pl where the transition sets on and it gets completed by reaching
the upper bound pu, beyond which no further change occurs in the
system. In the transition regime the probability distribution of the size
of failure cascades exhibits a crossover between two power laws of
different exponents. On themacroscopic scale theσ(ε) curve of LLS bun-
dles follow themeanfield solution of themodel at all rewiring probabil-
ities but with a lower strength. The critical load and strain where
ultimate failure occurs increase with the rewiring probability and tend
towards limits which fall close to their mean field values.

We demonstrated that the degree of disorder of the strength of fi-
bers has a substantial effect on the transition: as the disorder gets re-
duced the transition regime shrinks and shifts to higher rewiring
probabilities. Most notably the LLS-ELS transition is limited to a well-
defined range of disorder of the strength of nodes. In particular, there
exists a threshold amount of node strength disorder below which the
randomization of the network of load transmitting connections does
not provide any improvement neither of the overall load bearing capac-
ity nor of the cascade tolerance of the system. Computer simulations re-
vealed that at low strength disorder the fully random network is the
most stable one, while at high disorder best cascade tolerance is ob-
tained at a lower structural randomness.

Based on the interplay of the network structure and node strength
disorder we constructed an analytical argument which provided a rea-
sonable description of the numerical findings. These calculations re-
vealed that two competing mechanisms determine the response of



A. Batool, G. Pál, Z. Danku et al. Chaos, Solitons and Fractals 159 (2022) 112190
the network: the rewiring of the underlying lattice introduces long
range random connections in the load transmission network which re-
duce the load concentration around failed regions, and in turn allow the
system to tolerate larger cascades without becoming instable. At low
rewiring probabilities due to the low fraction of long range contacts,
small sized cascades remain practically unaffected. However, beyond a
characteristic size, cascades involve more and more fibers with rewired
contacts which increase their stability. This mechanism leads to the in-
crease of the cutoff cascade size and the emergence of a second power
law regime of the distributions with a lower exponent than for the
small cascades. However, as the rewiring probability increases the de-
gree distribution broadens which increases the fraction of low degree
nodes. This gives rise to the counter effect that in the vicinity of failing
low degree nodes a large load concentration emerges, which can trigger
catastrophic cascades. As a consequence, at high rewiring probabilities
the network becomes vulnerable to early cascades when the strength
of nodes is sampled from a narrow distribution.

The failure mechanism of the fiber bundle model we focused on is
quite generic with four key elements: (I) the total load on the system
is increased by adding the same load increments to all the intact ele-
ments; (II) nodes fail irreversibly such that they are removed from the
bundle together with their links; (III) failed nodes transfer their load
to their intact nearest neighbors through their links; (IV) the load on
the system is conserved during the spreading of failure cascades. The
fiber bundle model has been used to study the emergence of cascading
breakdown of roads carrying traffic, flow channels, and power grids.
Due to the minimum amount of additional assumptions we made, our
results should be relevant for these modelling approaches as well.
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