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Evolution of anisotropic crack patterns in
shrinking material layers

Roland Szatmári, a Zoltán Halász, ab Akio Nakahara, c So Kitsunezaki d and
Ferenc Kun *a

Anisotropic crack patterns emerging in desiccating layers of pastes on a substrate can be exploited for

controlled cracking with potential applications in microelectronic manufacturing. We investigate such

possibilities of crack patterning in the framework of a discrete element model focusing on the temporal

and spatial evolution of anisotropic crack patterns as a thin material layer gradually shrinks. In the model

a homogeneous material is considered with an inherent structural disorder where anisotropy is captured

by the directional dependence of the local cohesive strength. We demonstrate that there exists a

threshold anisotropy below which crack initiation and propagation is determined by the disordered

micro-structure, giving rise to cellular crack patterns. When the strength of anisotropy is sufficiently

high, cracking is found to evolve through three distinct phases of aligned cracking which slices the

sample, secondary cracking in the perpendicular direction, and finally binary fragmentation following the

formation of a connected crack network. The anisotropic crack pattern results in fragments with a shape

anisotropy which gradually gets reduced as binary fragmentation proceeds. The statistics of fragment

masses exhibits a high degree of robustness described by a log-normal functional form at all

anisotropies.

1 Introduction

Shrinkage induced cracking of thin material layers attached to a
substrate is abundant in nature giving rise to the formation of
spectacular polygonal crack patterns. Examples can be mentioned
on a wide range of length scales from dried lake beds through
permafrost regions on Earth and Mars, to the three-dimensional
structures of columnar joints formed in cooling volcanic lava.1,2 The
simplest realization of such crack patterns can be achieved in the
laboratory by desiccating thin layers of dense suspensions such as
coffee,3 clay,4–6 or calcium carbonate7 on a rigid substrate where the
gradual solidification leads to shrinkage stresses and cracking. A
very important characteristic feature of the emerging crack patterns
is the cellular structure which has a high degree of isotropy in the
crack orientation.1,3–11

Controlled cracking of thin material layers, including the
guidance of cracks along predefined paths and the structuring

of crack patterns, has a great technological potential especially
for microelectronic manufacturing.12–14 Recently, a promising
method of the generation of controlled crack patterns has been
suggested by applying mechanical excitation to dense suspen-
sions before desiccation sets in. It has been demonstrated
experimentally for calcium carbonate and magnesium carbo-
nate hydroxide pastes that subjecting the paste to vibration or
flow the emerging desiccation crack pattern remembers the
direction of excitation.7,15 Detailed investigations have revealed
that the mechanical excitation imprints a directional or spatial
distribution of density fluctuations and plastic deformation in
the paste which affects the local mechanical strength of the
solidifying material and in turn shows up in the crack
structure.16–18 Varying the way of excitation, furthermore, the
strength and range of interaction of colloidal particles it was
demonstrated that the memory effect of pastes provides an
efficient way of controlled generation of crack patterns in thin
layers.19,20

In a homogeneous paste the position and orientation of
cracks are determined by the local stress field induced by
shrinkage and by the disorder of the material. The cellular
crack patterns obtained in unperturbed pastes with an isotropic
orientation of cracks is a fingerprint of the dominance of
materials’ disorder in crack initiation.3–7,10 The density fluctua-
tion and plastic deformation imprinted by the initial mechan-
ical excitation overcome the effect of disorder and give rise to
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an anisotropic crack structure, where the primary cracks are
aligned along a direction determined by the excitation.19,21 Due
to its potential technological applications, here we investigate
how the competition of the initially imposed anisotropy and
the structural disorder of the thin layer affects the formation of
cracks and the overall structure of the crack pattern. We use a
discrete element model of a thin material layer attached to a
rigid substrate. In the model, structural disorder is introduced
through the discretization of the layer on a random lattice of
convex polygons which ensures a high degree of isotropy of the
mechanical features. The initial anisotropy, generated e.g. by
shaking in experiments, is captured by introducing orienta-
tional dependence for the strength of cohesive elements
between a weak and a strong direction. Varying the strength
of anisotropy at a fixed degree of disorder we show that the
competition of the two leads to a highly complex behavior. In
particular, above a threshold anisotropy shrinkage induced
cracking evolves through three distinct phases: (I) formation
of primary cracks aligned with the strong direction, (II) sec-
ondary cracking in the perpendicular direction, and (III) binary
breakup of fragments after a connected fracture network is
established. Based on computer simulations we give a detailed
quantitative characterization of the three phases. The shape of
fragments of the layer proved to be sensitive to the initial
anisotropy, however, we demonstrate that the mass (size)
distribution of fragments has a high degree of robustness
characterized by a log-normal functional form at all
anisotropies.

2 Discrete element model of a
shrinking layer on a substrate

Recently, we have introduced a discrete element model (DEM)
of a thin brittle layer attached to a rigid substrate, which
captures the essential mechanisms of the deformation and
fracture induced by gradual shrinking.22 In the following we
briefly summarize the main components of the model con-
struction highlighting how the anisotropic characteristics of
the layer are implemented.

2.1 Geometry and discretization

In order to reduce directional effects imposed by the sample
boundary, we considered a circular layer of radius R, which is
also a typical experimental setup used in laboratory
measurements.15 The layer is discretized in terms of randomly
shaped convex polygons which are created by a regularized
Voronoi tessellation of a rectangle.23,24 The model system was
obtained by cutting out a circular sample from the polygonal
random lattice which has a high degree of structural isotropy.
The polygons represent material elements which have three
degrees of freedom in two dimensions, i.e. the two coordinates
(xi, yi) of the center of mass, and the rotation angle
fi (i = 1,. . .,N). Here N denotes the total number of polygons
of the sample.

In order to capture the mechanical behavior of the material,
the center of mass of polygons, which are nearest neighbors in
the initial Voronoi tessellation, are connected by beam
elements.22–24 This way a triangular lattice of beams is attached
to the polygonal structure, see Fig. 1 for an illustration of the
model construction. The geometrical properties of beams
depend on the random tessellation such that the initial length
lij
0 and cross section Sij

0 of beams are the distance of the centers
and of the length of the common side of the connected
polygons i and j, respectively.22 During the deformation of the
system the beams suffer longitudinal deformation, shear, and
bending giving rise to forces and torques acting on the poly-
gons. Parameters of the beams as the longitudinal and bending
moduli, Poisson ratio, are set such that the model, together
with the randomness of the Voronoi lattice, can reproduce the
elastic response and mechanical behavior of brittle materials to
a good precision under various types of loading conditions.23,24

2.2 Adhesion and shrinking

In order to represent the adhesion of the layer to the substrate
material, the center of mass of the polygons are coupled to the
underlaying plane by spring elements. The springs are stress
free in the initial position of the polygons -r0

i = (x0
i , y0

i ),
(i = 1,. . .,N), however, they exert a restoring force

-

Fs
i when the

polygons get displaced

-

Fs
i = �Ds(

-
ri �

-
r0

i ). (1)

Here Ds denotes the spring constant characterizing the strength
of coupling to the substrate. For simplicity, the same value of
Ds is used for all polygons without the possibility to break.

Fig. 1 Main components of the model construction: the shrinking layer is
discretized in terms of convex polygons. The circular sample was cut out
from the Voronoi tessellation of a rectangle. The polygons and beams
(yellow lines) in between represent material elements and their cohesive
breakable contacts, respectively. The beam elements form a triangular
lattice attached to polygons. The adhesion of the layer is captured by
springs coupling the center of polygons to the underlying plane. The
boundary polygons of the sample, highlighted by blue color, are fixed to
the container wall (red cylinder around the sample).
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We assume that the thin layer undergoes isotropic shrinking
e.g. due to desiccation while it is attached to the substrate and
to the container wall represented by the boundary polygons
(see Fig. 1). To capture the effect of shrinking, in the model the
natural length of beams lij is gradually decreased as a function
of time t

lij = lij
0(1 � st), (2)

where s denotes the constant shrinking rate. This time evolu-
tion gives rise to a uniform shrinkage strain

e = (lij
0 � lij)/lij

0 = st, (3)

which increases linearly with time. Since the coupling to the
substrate and to the side walls prevents the free relaxation,
stresses build up in the material. To mimic the effect of the
container wall, along the external boundary of the sample the
particles are fixed, i.e. no displacement and rotation of bound-
ary polygons are allowed.

2.3 Breaking of cohesive bonds

In order to represent the shrinkage induced breakup of the
layer, in the model we assume that solely the beams connecting
the particles can break, while the spring elements between the
particles and the substrate are not breakable. The local stretch-
ing and shear (bending) contributes to the breaking of a beam
according to a physical breaking rule

ebij
eth

 !2

þmax Yij j; Yjj jð Þ
Yth

� 1; (4)

where the first and second terms capture the contributions of
stretching and bending at the beam ends, respectively.2,23 Here
eb

ij denotes the longitudinal strain of the beam between parti-
cles i and j, while Yi, and Y j are the bending angles at the
beam ends.22 The breaking criterion eqn (4) is evaluated at each
iteration step and those beams which fulfill the condition are
removed from the simulations. The subsequent removal of
beams leads to the formation of cracks in the layer. Note that
the fixed boundary condition, i.e. the coupling to the container
wall can give rise to a slight shearing of the beams in spite of
the isotropic shrinking.

The value of the breaking parameters eth and Yth control the
relative importance of the stretching and bending modes of
breaking. We assume that the plastic deformation imprinted by
the initial mechanical excitation in pastes introduces a direc-
tional dependence of the fracture strength of the solidifying
paste. In order to capture this effect in the model, the breaking
thresholds eth and Yth do not have any randomness, however,
we assume that they depend on the orientation angle a of the
beam with respect to the x axis, which represents e.g. the
direction of shaking in the initial configuration. For simplicity,
we implemented the functional forms

ethðaÞ ¼ e0thð1þ a cos aÞ;

YthðaÞ ¼ Y0
thð1þ a cos aÞ;

(5)

where the orientation angle a takes values in the range 0 r ar
p/2 (Fig. 2). In spite of the homogeneity of the structural and
mechanical properties, the angular dependence eqn (5) gives
rise to an anisotropy of the fracture characteristics of the layer.
The strength of anisotropy is controlled by the parameter a,
which can be varied from 0 (isotropy) to large values a c 1
realizing the limit of highly anisotropic behavior. The para-
meters e0

th and Y0
th set the scale of beam strength such that at a

given value of the anisotropy a the thresholds eth and Yth vary
from e0

th to (1 + a)e0
th, and from Y0

th to (1 + a)Y0
th, respectively.

When two polygons i and j, which are not coupled by beams
(because e.g. the beam connecting them is broken), come into
contact during the breakup process, an elastic restoring force
Fc

ij is introduced between them. This contact force is assumed
to be proportional to the overlap area Aij of contacting polygons
and to the Young modulus Y of the material.22 Since the
loading condition ensures the opening of cracks, the contact
force has solely a minor role in the simulations.

Discrete element simulations were performed by solving the
equation of motion of the polygonal particles by means of a 5th
order Predictor–Corrector scheme.25 The motion of particles
was strongly damped by a velocity dependent friction force. The
shrinking rate was set to a low value so that the damping force
was sufficient to suppress oscillations. For each parameter set
averages were calculated over 40 simulations with different
realizations of disorder of the Voronoi lattice. The values of
the main parameters of the model are summarized in Table 1.

3 Breaking mechanism at different
anisotropies

We performed a large amount of computer simulations varying
the value of a in the range 0 r a r 5 to reveal how the
anisotropy affects the evolution of the fracture process and the
structure of the emerging crack network as the layer gradually

Fig. 2 Angular dependence of the breaking parameters eth and Yth. The
angle a is measured from the x axis of the coordinate system demon-
strated in Fig. 3.
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shrinks. To quantify the overall damage suffered by the layer
during the fracture process, we introduced the fraction of
broken beams d(t) with the definition d(t) = Nb(t)/NB, where
Nb and NB denote the number of beams broken up to time t and
the total number of beams in the layer in the initial state,
respectively. It is a very important feature of our model that it
contains solely a single source of disorder, i.e. the discretization
of the material on a random lattice of convex polygons which
introduces structural disorder without any directional depen-
dence. Hence, for zero anisotropy a = 0 of the breaking thresh-
olds, representing the absence of initial mechanical excitation
in experiments, a cellular crack pattern is expected with a high
degree of isotropy of the crack orientation. This is illustrated in
Fig. 3 where snapshots of the evolution of the crack pattern are
shown at a = 0 for 4 different values of the damage parameter d.
Before beam breaking starts, shrinking of the layer results in a
homogeneous stress field, so that cracks nucleate at random
locations. In agreement with former studies,1,22,26 during their
growth cracks can undergo crack tip splitting and branching as
it can be observed in Fig. 3(a). As shrinking proceeds, the
growing cracks merge and gradually form a connected fracture
network along which the layer falls apart into fragments. This
point is reached somewhere between Fig. 3(c and d) at about
the damage dc E 0.28. Further shrinking results in crack
formation typically in the middle of the fragments which
breaks them into two pieces gradually reducing their size
(Fig. 3(c and d)).

Simulations revealed that the presence of anisotropy a 4 0
has a strong effect both on the initiation and propagation of
cracks, which in turn shows up also in the structure of the crack
pattern and in the geometrical features of fragments. This is
demonstrated by Fig. 4 for the case of a = 1 presenting
4 snapshots of the evolution at different stages d of the fracture
process. Due to the directional dependence of the local strength
eth and Yth, in the initial phase of the fracture process those
beams break which have a higher angle a E p/2 with the
horizontal direction. Removal of beams create micro-cracks
along the edges of polygons, which are nearly perpendicular
to the beam direction. As a consequence, the primary cracks
grow mainly along the horizontal direction as it can be
observed in Fig. 4(a). As the strain increases in the layer with

shrinking, stronger beams at a lower angle with the horizontal
direction start also to break creating cracks even along the
vertical direction in Fig. 4(b). When the fully connected crack
network appears, the strong alignment of cracks results in a
pronounced anisotropy of the emerging fragments (Fig. 4(c)). It
is interesting to note that as shrinking proceeds, in agreement
with former experimental and theoretical studies,1,26–28 the
largest deformation occurs around the middle of fragments
which favors crack formation perpendicular to the longest
extension of fragments. This mechanism results in splitting
the fragments into two pieces of nearly equal size gradually
reducing the anisotropy of fragments (Fig. 4(d)). These quali-
tative observations will be quantitatively explored in the next
sections.

4 Three phases of cracking

Before beam breaking sets on, a homogeneous stress field
builds up in the layer so that the first crack nucleates at a
beam which has a high strain and a low breaking threshold.
The structural disorder has the consequence that those beams
which are longer and thinner suffer a larger local deformation
and start breaking at the earliest if they have a large angle
a E p/2 with the horizontal direction. To characterize how
crack initiation is affected by the presence of anisotropy,

Fig. 3 Time evolution of cracking in an isotropic layer a = 0. Snapshots
are presented at different values of the fraction of broken fibers d: (a) 0.06,
(b) 0.14, (c) 0.22, (d) 0.30. Cracks nucleate at random positions and
gradually grow (a and b). Fragments are formed when the entire crack
network becomes connected, which occurs between (c) and (d). Further
shrinking gives rise to binary break up of the fragments (d), which gradually
reduce their size. Note the cellular structure of the crack network with a
high degree of isotropy of the crack orientation. (a) Also demonstrates the
coordinate system which is used throughout the presentation of the
results.

Table 1 Parameter values used in the simulations

Parameter Value

System radius R 60 cm
Average number of polygons N 11 500
Average number of beams NB 33 700
Typical size of a single element 1.0 cm
Density r 5 g cm�3

Elements Young modulus Y 1 � 1010 dyn cm�2

Beams Young modulus E 5 � 109 dyn cm�2

Spring constant Ds 6 � 108 dyn cm�1

Time step dt 3 � 10�7 s
Shrinking rate s 5 � 10�3 s�1

Minimum strength e0
th 0.015

Minimum strength Y0
th 3.01
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we determined the average value heini of the shrinkage strain ein

where the first micro-crack nucleates in the system. It can be
observed in Fig. 5 that the crack initiation strain heini steeply
increases already at the smallest anisotropies 0 t a and it has a
monotonous behavior over the entire range of the parameter a
considered. To quantify how the deviation of heini from the
isotropic case heini (a = 0) increases with growing anisotropy, in
the inset of Fig. 5 we replotted the difference of einh i � e�in as a
function of a. Of course, the value of the constant e�in should fall
close to heini(a = 0), however, we tunned it as a free parameter to
obtain the best straight line on a double logarithmic plot. The
good quality straight line observed in the inset of Fig. 5 con-
firms that the crack initiation strain has a power law depen-
dence on the degree of anisotropy

einh i ¼ e�in þ Bab: (6)

The value of the exponent b was obtained by fitting b = 0.22 �
0.01, while the additive constant is e�in

�
e0th ¼ 0:664. We can get

an estimate of the value of heini by assuming that all the beams
have the same deformation and no polygons suffer rotation up
to the time when the first micro-crack occurs. In this case that
beam should break first which has the highest angle amax with
the horizontal. Averaging amax over the samples, the value
hamaxi we obtain is close but not equal to p/2. Taylor expanding
the cosine around p/2, from eqn (5) we can obtain an
approximate expression of the crack initiation strain heini E
e0

th(1 + a(p/2 � hamaxi)), which is consistent with eqn (6),

however, the strength of anisotropy a has a higher exponent
b = 1. The lower value of b obtained by computer simulations is
due to the fluctuations of the local deformation caused by the
inherent structural disorder of the sample.

4.1 Angular distribution of macro-cracks

When a beam breaks, a micro-crack is formed along the
common edge of the two polygons. As shrinking proceeds
additional micro-cracks nucleate and gradually grow by the
breaking of adjacent beams resulting in extended macro-
cracks. To obtain a clear view on the structure of the evolving
crack pattern, we worked out an algorithm which constructs the
macro-cracks of the layer starting from individual micro-cracks.
A macro-crack is identified as a continuous path of polygon
edges with broken beams spanning between two junction
points. A junction point of the crack network is a polygon
corner from which either one, or three micro-cracks start.
Polygon corners where two micro-cracks meet are considered
to be internal points of macro-cracks, while junctions of one
and three micro-cracks are end points of arrested cracks, and
the merging points of independent cracks, respectively. The
algorithm starts by identifying the junction points of one and
three micro-cracks. Then considering a junction point as the
start of a macro-crack, the algorithm follows the crack path
until another junction point is reached defining the other end
of the macro-crack. The algorithm is demonstrated in Fig. 6.
Due to the randomness of the polygonal lattice, the crack path
is never straight, instead it has a zig-zag structure. Macro-cracks
are characterized by their length l and orientation, which are
determined as the sum of the length of polygon edges along the
crack path, and as the angle Y between the x axis and the
straight line connecting the two end junctions of the crack. In
the evolving system, cracks are always identified in snapshots
which has the consequence that the merging of a younger crack

Fig. 4 Time evolution of the cracking thin layer in the presence of
anisotropy a = 1. Snapshots are presented at different values of the fraction
of broken fibers d: (a) 0.06, (b) 0.14, (c) 0.22, (d) 0.30. Primary cracks are
aligned with the horizontal direction (a and b). The connected crack
network emerges when secondary cracks vertically connect the primary
ones (c). Initially, fragments have a strong anisotropy (c), which is then
gradually reduced by binary breakup (d).

Fig. 5 The average value of the shrinkage strain heini where the first crack
nucleate in the layer scaled with the breaking parameter e0

th as a function of
the degree of anisotropy. The inset demonstrates that subtracting an
appropriate constant e�in from the curve of the main panel a power law
dependence is obtained on a.
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with an older one results in the reduction of crack length by
creating a new junction point in the crack interior.

The probability distribution p(Y) of the orientation angle Y
is presented in Fig. 7 for an anisotropic system a = 3 at several
values of the damage fraction d. It can be observed that at early
stages of the fracture process the distribution is strongly
peaked around Y E 0, which shows that the primary cracks
are strongly aligned with the horizontal direction. As breaking
proceeds, cracks also develop at higher angles Y so that the
alignment gets gradually less pronounced quantified by the
flattening of the distribution p(Y). Angular distributions
obtained at different degrees of anisotropy a are compared in
the inset of Fig. 7 at the same value of the damage fraction
d = 0.17 at an early stage of breakup. The strong effect of
anisotropy on the crack orientation is evident, i.e. the distribu-
tion is nearly uniform for the case of isotropy a = 0, however,
increasing a suppresses cracks at large angles, e.g. in case of
a = 3 there are no cracks with Y 4 0.3 in the layer at this
d value.

4.2 Transition from primary to secondary cracking

The results imply that primary cracks, nucleated at the begin-
ning of the fracture process are strongly aligned with the
horizontal direction (i.e. the strong direction). However, due
to the complex deformation field emerging in the damaged
layer, later nucleating secondary cracks tend to have a higher
angle with the primary ones. To understand how this transition
of the dominant orientation occurs, first we determined the
number of cracks N8 and N>, having an orientation angle below

and above p/4 with the horizontal direction, respectively, in
consecutive snapshots of the system with a fixed difference of
damage Dd = 2.8 � 10�3. Then the increments n> = N>(d + Dd)
� N>(d) and n8 = N8(d + Dd) � N8(d) of the crack numbers were
obtained. Fig. 8 presents both quantities n>, and n8 as function
of damage d. It can be observed that for the isotropic case a = 0
the curves of n>(d) and n8(d) practically coincide over the entire
d range considered, which shows the absence of any preferred
direction of crack formation. However, anisotropy a 4 0 results
in a clear separation of the increments n> { n8 for low
damages, i.e. at the beginning of the fracture process the
nucleation and growth of cracks parallel to the horizontal
direction dominate indicated by the increasing rate n8, whereas
hardly any cracks are created at large angles with the horizontal
n> E 0. With increasing damage d the increment n8 passes a
maximum and attains a local minimum practically at the same
d where cracking in the perpendicular direction sets on with an
increasing n>. As the anisotropy a increases this feature of the
cracking mechanism gets more pronounced in such a way, that
for a 4 0.4 a finite damage fraction has to be reached to get the
first crack at an angle Y4p/4 with the horizontal. In this range
of anisotropy two distinct phases of cracking can be distin-
guished separated by a characteristic damage fraction dps: at
low damage d o dps the phase of primary cracking is char-
acterized by n> E 0 and n8 4 0 implying the strong alignment
of cracks along the horizontal direction, while at d 4 dps in the
phase of secondary cracking n> E n8 holds, and both incre-
ments are growing with d. Simulations revealed that the
stronger the anisotropy is, the sharper the transition becomes
shifting also the threshold value dps towards higher damages.
This can also be clearly observed in the snapshots presented in
Fig. 4 for the case of a = 1.

Fig. 6 Identification of junction points (blue dots) and macro-crack in a
snapshot of the damaged layer for the isotropic case a = 0. For clarity, the
underlying polygonal structure is also presented, however, macro-cracks
composed of a single polygon edge are removed. The straight lines
connect the two end junctions of macro-cracks. In the upper right corner
a magnified view on a smaller area is shown.

Fig. 7 Probability distribution p(Y) of the orientation angle Y of macro-
cracks at the anisotropy a = 3 for several values of the damage fraction d.
For small d the distribution is strongly peaked at Y E 0, however, as
fracture proceeds the curves are gradually flattening. Inset: The distribu-
tion p(Y) for several degrees of anisotropy a obtained at the same damage
fraction d = 0.17. Note that as a increases the peak at YE 0 gets gradually
more pronounced.
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4.3 Connected crack network

It is important to note that the primary cracks break the
shrinking layer into long thin slices which are then segmented
in the perpendicular direction by the secondary cracks. Beyond
the transition point dps from primary to secondary cracking, the
evolving crack network has a second critical point where the
behavior of the system undergoes qualitative changes. Namely,
the damage fraction dc where the merging of primary and
secondary cracks leads to the emergence of a connected crack
network along which the layer falls apart into a large number of
fragments. This critical point can be determined by studying
the evolution of fragments, which are defined as sets of poly-
gons connected by the surviving intact beams at a given
shrinkage strain. Since fragments are enclosed by cracks, they
first occur in the layer in a large amount at the critical point dc.
Before the emergence of the spanning crack network the layer is
damaged, however, it practically keeps its integrity. In order to
characterize how the transition from the damaged to the
fragmented state occurs during the desiccation process, we
determined the average mass of fragments Mav as a function of
damage d. After identifying the fragments, for a single sample
the average fragment mass was calculated as the ratio of the
second M2 and first M1 moments of fragment masses mi,
i = 1,. . .,K, where K denotes the total number of fragments in
the layer at a given d. The qth moment of the fragment
ensemble is defined as

Mq ¼
XK
i¼1

0
m

q
i ; (7)

where the 0 indicates that the largest fragment mass Mmax is
skipped in the summation. Then Mav was obtained by averaging
the value of M2/M1 over 40 samples at each anisotropy

Mav = hM2/M1i. (8)

It can be observed in Fig. 9 that the Mav(d) curves have a well
defined maximum the position of which dc depends on the
degree of anisotropy a. Fragment formation starts in the
secondary cracking regime d 4 dps due to the merging of
cracks of widely different orientation angles. For higher aniso-
tropy a the segmentation sets on at a higher damage dps, which
has the consequence that fragment formation requires also a
higher fraction of broken beams. However, these early frag-
ments are much smaller than the original size of the system.
Since the largest fragment is always omitted in the calculation
of moments Mq, the position of the maximum dc marks the
point where the crack network gets connected and spans the
entire system so that the dominating fragment suddenly breaks
up into a large number of pieces.29,30 Beyond the maximum no
dominating fragment exists, and all fragments undergo gradual
breakup as shrinking proceeds. It follows that depending on
the value of damage d the regime of secondary cracking d 4 dps

can be sub-divided into damaged and fragmented phases with
a transition point at dc, where the crack network gets con-
nected. Of course, the critical damage fraction dc monotonically
increases with the anisotropy.

4.4 Phase diagram of the system

Based on the analysis of the crack orientation and of the overall
structure of the emerging crack network we conclude that the
evolution of the crack pattern of shrinkage induced fracturing
of a thin layer has essentially three phases: (I) primary cracking is
dominated by the formation of long cracks aligned with a direction
imprinted by the initial mechanical excitation. (II) Secondary crack-
ing sets on when cracks even perpendicular to the primary ones
are generated. As shrinking proceeds, primary and secondary
cracks merge which leads to the emergence of a connected
network of cracks spanning the entire system (phase (III)).

Fig. 8 Increments of the number of cracks of different directions as
function of the damage fraction d at several anisotropies. The corres-
ponding curves of n8 and n> are represented by the open and filled
symbols, respectively.

Fig. 9 Average mass of fragments Mav obtained from eqn (8) as a function
of the damage fraction d for several values of the anisotropy parameter a.
Mav is scaled with the total mass M0 of the system. The position of the
maximum dc(a) marks the point of the dynamics where the evolving crack
network becomes globally connected. The stronger alignment of primary
cracks at higher anisotropies has the consequence that the position of the
maximum shifts to higher values with increasing a.
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Based on computer simulations, we determined the transition
points dps and dc for a large number of anisotropies a and
constructed the phase diagram of the system on the damage-
anisotropy parameter plane, which is illustrated in Fig. 10.
Simulations revealed that at low anisotropies, only weak align-
ment of crack occurs so that already at low damages cracks of
any orientation may be generated in the system. Beyond the
threshold anisotropy ac E 0.4 indicated by the vertical dashed
line in Fig. 10, strongly aligned cracks dominate the beginning
of shrinkage induced cracking d o dps slicing the sample. The
damage has to surpass the threshold value dps to obtain
secondary cracks segmenting the long slices in the perpendi-
cular direction. The dynamics of breakup changes at the
damage dc, where the connected crack network emerges and
binary fragmentation sets on. It can be observed in the phase
diagram that both threshold damages dsp and dc are increasing
with the anisotropy a. Note that below the threshold anisotropy
a o ac the cracking process has only two phases, i.e. the
primary and secondary regimes cannot be separated. This is
caused by the structural disorder of the sample, which favors
random isotropic orientation of cracks. The value of a has to
surpass the threshold anisotropy ac to overcome the effect of
disorder.

5 Binary fragmentation

The emergence of the connected crack network which spans the
entire system has the consequence that the layer breaks up into
a large number of fragments. As shrinking proceeds, the
fragments accumulate strain again which results in crack

formation typically starting from the middle of the fragment
(see also Fig. 3 and 4). As a consequence, fragments undergo a
sequence of binary breakup events gradually reducing their
mass (size).

5.1 Evolution of the shape of fragments

The structure of the crack network strongly depends on the
degree of anisotropy, hence, it can be expected that anisotropy
affects also the evolution of the fragmentation process. The
long straight cracks of primary cracking create elongated slices
in the layer, which are then segmented by the secondary cracks
into smaller pieces. This mechanism results in fragments
whose elongated shape originates from the structure of the
connected crack network formed at the critical damage fraction
dc. To characterize the shape of fragments we determined the
bounding box of individual pieces with side length Lx and Ly

directed along the x and y axis of the initial coordinate system,
respectively. For illustration see the inset of Fig. 12. As a shape
descriptor the dimensionless ratio Ly/Lx was averaged over the
ensemble of fragments at a given damage fraction d.31,32

It can be observed in Fig. 11 that in the absence of initial
anisotropy a = 0, fragments have an isotropic shape hLy/LxiE 1
at any damage state d during the evolution of the system.
However, anisotropy a 4 0 of the local materials’ strength
gives rise to an elongated fragment shape hLy/Lxio 1 such that
the higher a is, the more elongated the fragments get. It
is interesting to note that the degree of shape anisotropy
is the highest (i.e. hLy/Lxi is the smallest) at the fragmenta-
tion critical point dc, where the majority of fragments are
first created. During the binary fragmentation process, cracks
have a higher probability to divide the longer side of frag-
ments into two pieces, which gradually increases the aspect

Fig. 10 The three phases of shrinkage induced cracking on the damage-
anisotropy parameter plane. The vertical dashed line indicates that at low
anisotropies a o ac only weak alignment of cracks occur so that cracks of
any direction may form already at low damage. Above the threshold
anisotropy a 4 ac, the beginning of the fracture process is dominated by
aligned cracking, so that secondary cracks segmenting the sliced sample
start to occur above the phase boundary dps. As the damage d further
increases, the merging of cracks leads to the emergence of a connected
crack network at dc and binary fragmentation sets on.

Fig. 11 The average aspect ratio hLy/Lxi of fragments as a function of the
damage fraction d for several anisotropies a. Note that the asymptotic
value ryx of the aspect ratio decreases with a and it attains a limit value at
ryx E 0.62.
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ratio (i.e. reduces the shape anisotropy). Simulations revealed
that in all cases of initial anisotropy a 4 0 the binary fragmen-
tation gradually reduces the size of fragments but at the
same time it leads to the emergence of a stable fragment
shape characterized by the asymptotic value of the aspect ratio
hLy/Lxi- ryx. It can be seen in Fig. 12 that the asymptotic aspect
ratio ryx decreases with increasing initial anisotropy a but
attains a limit value ryx E 0.62.

In the final state the average shape of fragments is governed
by the minimization of the accumulating elastic energy Eel.

1

Assuming that the linear extension of stable fragments falls
below the characteristic length of the elastic field, from the
minimization of Eel we can obtain the asymptotic aspect ratio
ryx as a function of the strength of anisotropy a

ryx �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ að1� mÞ
2þ að1þ mÞ

s
; (9)

where the parameter m is related to the Poissonian number n of
the layer as n = (1 � m)/(1 + m). Fig. 12 shows that this analytical
expression provides a reasonable approximation of the numer-
ical results with m = 0.64. Eqn (9) implies that for very large
anisotropies a -N the stable aspect ratio ryx tends to the limit

ryx !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� mÞ=ð1þ mÞ

p
¼

ffiffiffi
n
p

. Substituting the limit value
ryx = 0.62 yields n E 0.38, which is somewhat higher than the
Poissonian number of the layer obtained from simulations
n E 0.2.

5.2 Mass distribution of fragments

Computer simulations revealed that in spite of the complexity
of the evolution of fragment shapes, the statistics of their mass
exhibits a high degree of robustness. Fig. 13 presents the mass
distribution p(m, d) of fragments obtained at several different

damage fractions above the fragmentation critical point d 4 dc

for two values of the anisotropy parameter a = 0 and a = 1. Using
logarithmic scale on the horizontal axis, the distributions are
nearly symmetric for both anisotropies at all shrinkage stages
d, however, with increasing d both the average mass of frag-
ments hmi and the upper cutoff mmax of the distributions are
decreasing. Note that around the lower cutoff mmin of the
fragment mass, the shape of the distributions gets somewhat
distorted, which becomes more pronounced for higher
damages d. This behavior is caused by the existence of unbreak-
able polygons, which does not allow small fragments to further
reduce their size, and hence, modifies the statistics in the low
mass range.

Fig. 14 demonstrates that rescaling the mass distributions
with the average mass of fragments hmi the p(m, d) curves of
different d can be collapsed on a master curve. The high quality
data collapse implies the scaling structure of the distributions

Fig. 12 Asymptotic value ryx of the aspect ratio hLy/Lxi as a function of the
anisotropy parameter a. The dashed straight line represents the limit value
ryx E 0.62, which characterizes the stable shape of fragments. The
continuous red line is the analytic approximation of ryx obtained from
eqn (9) with the parameter value m = 0.64. The inset presents a magnified
view on a small region of the sample, where fragments are highlighted by
different colors. The construction of the bounding box with side lengths Lx

and Ly is illustrated for a fragment.

Fig. 13 Mass distributions at different damage fractions d for two values
of the anisotropy parameter a = 0 (a) and a = 1 (b). As d increases the
functional form of the curves remains practically the same, only the
average size of the fragments gets reduced.

Fig. 14 Scaling plot of the mass distributions p(m, d) of fragments at four
different anisotropies a: (a) a = 0, (b) a = 0.5, (c) a = 1, (d) a = 2. Rescaling
the distributions with the average fragment mass hmi, the curves obtained
at different damages d 4 dc can be collapsed on the top of each other.
The continuous lines represent fits with the log-normal distribution
eqn (11).
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p(m, d) = hmi�1C(m/hmi), (10)

where d dependence on the right hand side only occurs through
the average of fragment masses hmi(d). It is important to
emphasize that the scaling structure eqn (10) is valid for all
anisotropies a. This result again shows the robustness of the
statistics of fragment masses (sizes) which can be attributed to
the generic binary fragmentation mechanism.22,28,33

The scaling function C(x) can be very well described by the
log-normal distribution

CðxÞ ¼ 1

xs
ffiffiffiffiffiffi
2p
p exp �ðlnðxÞ � mÞ2=2s2Þ

� �
; (11)

where m and s denote the logarithmic average and the standard
deviation, respectively. The continuous lines in Fig. 14 present
fits of the numerical data with eqn (11). Deviations from
eqn (11) can be observed in the regime of small fragment
masses due to the existence of unbreakable fragments (single
polygons).

The log-normal mass distribution is consistent with the
binary splitting of the fragments which gives rise to a cascade
process of fragment creation.22,28,33–35

6 Discussion

Crack formation under mechanical load drives the failure of
materials, and hence, it is typically undesired in applications.
However, recent investigations have revealed that the initiation,
propagation, and arrest of cracks can be controlled in thin
material layers by imposing local curvature,14 by patterning the
underlying substrate surface,12 and by mechanical perturbation
of dense suspensions before they start drying.7,15,19 Here we
focused on the desiccation induced cracking of a thin layer
attached to a substrate in which anisotropy was imprinted by
initial vibration or flow. We constructed a discrete element
model of a layer of disordered micro-structure where anisotropy
was captured by introducing directional dependence for the
strength of the cohesive coupling of material elements. Com-
puter simulations were performed varying the strength of
anisotropy a in a broad range while other parameters of the
model were fixed.

Our study revealed that there exists a threshold anisotropy ac

below which the material’s disorder dominates the initiation
and growth of cracks resulting in a cellular crack pattern close
to the completely isotropic case. When the anisotropy is suffi-
ciently high a 4 ac, the cracking is found to evolve through
three distinct phases: the beginning of the process is domi-
nated by strongly aligned cracks which create slices in the
sample. Crack formation in the perpendicular direction sets
on above a critical value of the damage dps, which results in
segmentation of the sliced regions. The merging of cracks leads
to the emergence of a connected crack network along which the
sample falls apart into a large number of pieces. This occurs at
a second critical point dc beyond which further shrinkage
results in binary fragmentation breaking the fragments into

two pieces. As the anisotropy increases, the critical damages of
the transition points dps and dc shift to higher values.

We demonstrated that the shape of fragments formed at the
critical point dc inherits the anisotropy of the fracture pattern.
Further shrinking generates cracks typically in the middle of
the fragments perpendicular to their longer side, which drives
the fragment shape towards isotropy. Consequently, the aspect
ratio gradually increases with increasing damage but
approaches an asymptotic value, which depends on the initial
anisotropy a of the system. Simulations revealed that the
asymptotic aspect ratio of fragments decreases as the strength
of initial anisotropy grows converging to a finite lower bound. It
is a very interesting outcome of our study that in spite of the
strong effect of anisotropy on the structure of the crack pattern
and on the shape of emerging pieces, the size (mass) distribu-
tion of fragments exhibits a high degree of robustness. Namely,
at any parameter set a log-normal mass distribution was
obtained which shows that binary breakup governs the statis-
tics of fragment masses.

Although, we implemented a phenomenological representa-
tion of the anisotropy induced by the initial mechanical per-
turbation of dense pastes, the results of our discrete element
simulations are in a good qualitative agreement with the
experimental findings of ref. 7, 15, 19, 20, 33 and 35 on the
evolution of the crack pattern and on the size (mass) distribu-
tion of fragments. Based on the literature, we could make a
quantitative comparison to the final state fragment shape
obtained in ref. 7. Fig. 7(c) of ref. 7 presents the final state of
the desiccation process of a calcium carbonate layer which was
initially subject to strong shaking in the vertical direction. In
the digital image we determined the aspect ratio of the frag-
ments as 0.614 � 0.021, which is in a very good agreement with
the asymptotic value ryx = 0.62 obtained in our simulations. The
flexibility of DEM simulations made it possible to unveil the
entire phase structure of the system as the degree of anisotropy
is gradually changed at a fixed amount of disorder. For a
detailed quantitative comparison to the evolution of real desic-
cation crack patterns further laboratory measurements are
needed which are already in progress.

From the viewpoint of application, it is an important feature
of our DEM that the anisotropy of the local cohesive strength
has a spatial homogeneity which makes the position of the
aligned primary cracks random along the perpendicular direc-
tion similar to the measurements of ref. 7 and 19. Careful
experiments have revealed that inplane mechanical perturba-
tion like shaking allows for the control of the direction of
primary cracks while their position still remains stochastic.
Position control can be achieved by vertical perturbation in the
initial state e.g. by imprinting the paste with Faraday waves.19

Our modelling approach can be further extended to capture the
effect of such spatial inhomogeneities of the initial state.
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