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We present an extension of fiber bundle models to describe the mechanical response of
systems which undergo a sequence of stick-slip cycles taking into account the changing
stiffness and the fluctuating number of slip events of local material elements. After
completing all stick-slip cycles allowed, fibers can either ultimately break or can keep
their final stiffness leading to softening or hardening of the bundle, respectively. Under the
assumption of global load sharing we derive analytic expressions for the constitutive
response of the bundle with both quenched and annealed disorder of the failure thresholds
where consecutive slips occur. Our calculations revealed that on the macro-scale the
bundle exhibits a plastic behavior, which gets more pronounced when fibers undergo a
higher number of stick-slip cycles with a gradually degrading stiffness. Releasing the load a
permanent deformation remains, which increases monotonically for hardening bundles
with the maximum deformation reached before unloading starts, however, in the softening
case a non-monotonous behavior is obtained.We found that themacroscopic response of
hardening bundles is more sensitive to fluctuations of the number of stick-slip cycles
allowed than of the softening ones. The quenched and annealed disorder of failure
thresholds gives rise to the same qualitative macro-scale behavior, however, the
plastic response is found to be stronger in the annealed case.
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1 INTRODUCTION

Fibre bundle models (FBM) are one of the most important theoretical approaches to the damage and
fracture of disordered materials [1]. In the framework of FBMs, the specimen is discretized as a
bundle of parallel fibers which are subject to an external load along the fibers’ direction [2, 3]. The
Young modulus of fibers is typically assumed to be constant so that materials’ heterogeneity is
entirely represented by the randomness of the strength of fibers. Even in their simplest form, FBMs
provided a deep insight into the process of damaging of heterogeneous materials [2, 4, 5] making also
possible to embed fracture processes into the general framework of statistical physics [1, 6, 7] and to
clarify its analogy to phase transitions and critical phenomena [8–13].

Soon after the introduction of the basic concept of FBMs by Peires in 1927 [14], the model had
been extended to capture time dependence and fatigue effects [15]. During the past decades
subsequent developments of the model have demonstrated that varying the mechanical response
[16] (brittle, plastic) and rheological (visco-elastic) behavior [17–20] of individual fibers,
furthermore, the degree of strength disorder [21–23], range of load sharing (local, global) [11,
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24, 25] following breaking events, and the way of loading [19, 20,
26] (quasi-static, creep, fatigue) the model is able to capture a
broad spectrum of materials’ behavior. Due to this flexibility, the
model has gained a wide variety of applications from the fracture
of fiber reinforced composites [25, 27], through granular
materials, where force chains were treated as load bearing
fibers [28, 29], to the rupture of biological materials [30].

Recently, we have proposed an extension of FBMs [31, 32] to
describe the mechanical response of systems with a complex
micro-structure which respond to external loading by local
rearrangements, for instance, of particles like in granular
materials [28, 33] and in agglomerates of dipolar particles
[34], or by an activation of internal stored length such as
spider silk [35]. A special area where stick-slip dynamics can
be exploited for technological applications, is the development of
nanocomposites, in particular carbon nanotube (CNT)
composites, where CNTs are embedded in a polymeric matrix.
One of the interesting properties of CNT nanocomposites is the
ability to absorb vibrational energy which, together with high
strength and fatigue tolerance, makes them perfect candidates for
new multifunctional composite structures [36]. Recent
experimental studies have revealed that the damping
enhancement can be attributed to the CNT-matrix stick-slip
caused by the severe elastic mismatch which leads to shear
stress localization at the interfaces [37]. To represent the
microscale complexity underlying stick-slip dynamics, fibers of
our model were assumed to undergo a sequence of stick-slip
events: when the local load reaches a failure threshold the fiber
does not break, instead its load drops down to zero but the fiber
has the ability of support load again. The model has been
successfully applied to analyze the mechanical response of
sheared granular materials [33] and the effect of root
reinforcement on the stability of soils [29]. Complementing
the stick-slip FBM with a healing mechanism it proved to be
capable to describe the failure process of snow [38, 39].

In the basic setup of the model it is assumed that fibers keep
their original stiffness during their entire damage history [31,
32], which is a crude simplification. It is reasonable to assume
that restructuring events give rise to a degradation of the local
stiffness or to hardening, e.g., due to damage or activating
stored length inside the material, respectively. Additionally,
fibers of the bundle are allowed to undergo the same number of
slip events although in an extended sample the number of
possible restructurings may have a spatial variation. To make
the stick-slip FBM more realistic, in the present paper we
resolve these limitations by allowing for the change of the
stiffness of fibers as a result of slip events, and we capture the
fluctuations of the number of stick-slip cycles allowed for fibers.
Under the assumption of global load sharing, we derive analytic
expressions for the macroscopic constitutive response of the
bundle both for quenched and annealed disorder of failure
thresholds where slip is activated. The stiffness change is
treated in a multiplicative way which allows for a unified
framework of stiffness degradation and stiffening. We
demonstrate that the stick-slip dynamics results in a plastic
behavior on the macro-scale and explore consequences of the
new degrees of freedom of the model.

2 STICK-SLIP DYNAMICS WITH VARYING
STIFFNESS

The model consists of N parallel fibers which are characterized by
the same initial stiffness value E � 1. Under an increasing external
load σ fibers have a linearly elastic behavior up to a threshold load
σth. When the load on a fiber exceeds the failure threshold we
assume that the fiber does not break, instead it slips and gets
extended by increasing its equilibrium length until the load drops
down to zero. Heterogeneity of the material is represented by the
randomness of the slip thresholds, which are sampled from a
probability distribution p(σ th). The slip event is instantaneous in
the sense that it does not take time, however, after slipping has
been completed the fiber can support load again. As an important
step of generalization of the model we let the fibers’ stiffness
change after slipping in a multiplicative way, i.e. the stiffness is
updated as

E′ � aE, (1)

where a≥ 0 is the stiffness parameter of the model. Note that the
special case a � 0 captures the immediate irreversible failure of
the fiber right at the first slip which essentially results into the
same dynamics as the classical fiber bundle model [2, 4, 40]. The
parameter choice a � 1 recovers the original stick-slip model
where stiffness does not change during the loading history of
fibers [31, 32]. In our present study we focus on the parameter
ranges 0< a< 1 and a> 1, which represent stiffness degradation
and stiffening of fibers following slipping, respectively. For
practical applications of the model, stiffness degradation
(a< 1) is typically caused by internal damage of material units
represented by fibers. Stiffness increase (a< 1) occurs, for
instance, in granular materials under compression where the
restructuring of force chains may be accompanied by stiffening
[28], and in biological materials like spider silk which respond to
an increasing load by the activation of stored length [41].

After the slip has been completed, the fiber gets sticked so that
it can support load again described by the constitutive law

σ � aE(ε − εth), (2)

where ε denotes the strain of the fiber. Eq. 2 takes into account
that the relaxed length of the fiber is extended with the strain
threshold εth � σth/E of slipping. This dynamics has the
consequence that fibers may fulfill again the slipping condition
and can eventually undergo a stick-slip sequence representing the
gradual restructuring of the material. In order to describe such
sequences we set the number of allowed slip events K ≥ 1, which is
first assumed to have a fixed value for all the fibers of the bundle.
It follows from Eq. 1 that after k stick-slip cycles the stiffness E′ of
the fiber has the value

E′ � akE, (3)

which can be greater or lower than the initial value E, for a> 1 and
a< 1, respectively. It is a crucial question at which threshold loads
the subsequent slip events occur. In the simplest case we can
assume that the threshold value σth is fixed for the entire history
of a fiber which provides a representation of the quenched
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disorder of the materials’ micro-structure. It can also occur that
after restructuring events the local physical properties of the
system change which can be captured by assigning a new
threshold value to the fiber from the same probability
distribution p(σth) each time a slipping occurred (annealed
disorder).

For the interaction of fibers we assume global load sharing in
such a way that fibers are stretched between two hard loading
plates which ensure a global response of the entire system
following local slipping events. However, global load sharing
does not imply equal load of fibers in our stick-slip system
since fibers which suffered a different number of slips have
different stiffnesses and relaxed lengths, hence, they keep
different loads. After fixing the type of disorder the threshold
strains of slips can be determined from the corresponding stress
thresholds. A fiber which has slipped k times at the consecutive
strain thresholds ε(1)th , ε(2)th , . . . , ε(k)th up to the externally imposed
strain ε, keeps the load

σ � akE(ε − ε(1)th − ε(2)th −/ε(k)th ), (4)

where the sum of failure thresholds εk0 � ∑k
j�1ε

(j)
th determines the

relaxed length εk0 of the fiber. In the following we derive the
macroscopic constitutive relation of the bundle for the cases of
quenched and annealed disorder of slipping thresholds with
global load sharing. Our main goal is to explore the
consequences of the changing stiffness and of the fluctuations
of the number of slip events fibers can experience.

2.1 Quenched Disorder of Failure
Thresholds
Quenched disorder means that slips of a fiber always occur at the
same stress threshold σ th, assigned to it in the initial state of the
system. However, the corresponding threshold strains are not
constant, which is illustrated in Figure 1, where the damage
history of a single fiber is presented with a stiffness parameter

a< 1. It can be observed that in spite of the constant threshold
load σ th, the strain values ε(1)th , ε(2)th , ε(3)th , . . . where slips occur,
gradually increase due to the degrading stiffness. It follows from
Eq. 4 that the threshold strains ε(k)th (k � 1, . . . ,K) of consecutive
slips of a fiber are determined by its initial strain threshold ε(1)th
and by the stiffness parameter a of the model as

ε(k)th � ε(1)th

ak− 1
. (5)

The relaxed length ε(k)0 of the fiber after the kth slip is the sum
of all previous threshold strains which yields

ε(k)0 � ε(1)th (1 + 1
a
+ 1
a2

+/ + 1
ak−1

). (6)

For the sum of the geometric series inside the brackets we
introduce the shorthand notation S(a, k) so that Eq. 6 simplifies
to ε(k)0 � ε(1)th S(a, k). Here the value of S(a, k) can be cast into the
closed form S(a, k) � (a− k − 1)/(a−1 − 1) for a≠ 1. The above
expressions are valid both for gradual degradation a< 1 and
stiffening a> 1, resulting in an increasing and decreasing
sequence of strain thresholds of slip events, respectively. Note
that in the particular case of the original stick-slip model with
a � 1, the sum S(a, k) takes the value S(a, k) � k.

2.1.1 Derivation of the Constitutive Equation With
Varying Stiffness
To obtain a closed analytic form for the constitutive equation, we
assume strain controlled loading of the bundle between two hard
plates. At a given strain ε during the loading process, the bundle is
a mixture of subsets of fibers which are either intact (no slip), or
have suffered different number of slip events k, where 1≤ k≤K
holds. Based on Eqs 4–6 the failure index k of fibers can be
expressed in terms of their initial failure thresholds ε(1)th and the
externally imposed strain ε as

ε(1)th < ε, k � 0, (7)

FIGURE 1 |Mechanical response of a single fiber in the case of quenched disorder when the slipping threshold σ th is fixed for the entire damage history of the fiber.
The value of a is set to a � 0.8 so that gradual stiffness degradation occurs through the subsequent stick-slip periods. Since the stiffness is changing, the threshold
strains of slipping are increasing ε(1)th < ε(2)th < ε(3)th , in spite of the fixed stress threshold σth of the fiber.
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ε

S(a, k)< ε
(1)
th < ε

S(a, k + 1), 1≤ k<K ,
ε

S(a,K)< ε
(1)
th , k � K ,

where the failure index k � 0 stands for intact fibers.
The macroscopic constitutive response of the system can be

obtained by summing up the load σk(ε) kept by the subsets of
fibers which suffered exactly k slip events

σ(ε) � ∑K
k�0

σk(ε). (8)

The partial loads σk(ε) can be expressed in terms of the
disorder distribution as

σ0(ε) � Eε[1 − P(ε)] for k � 0, (9)

σk(ε) � akE∫ε/S(a,k)

ε/S(a,k+1)
[ε − ε1S(a, k)]p(ε1)dε1 for 1≤ k<K ,

(10)

σK(ε) � aKE∫ε/S(a,K)

εmin
th

[ε − ε1S(a,K)]p(ε1)dε1 for k � K,

(11)

where the first, second, and third terms provide the contribution
of intact fibers, of the fibers which have suffered exactly 1≤ k<K
slip events, and of the fibers which have completed all the K stick-
slip cycles, respectively. Note that the integration limits capture
the separation of the subsets of fibers given by Eq. 7. In the
limiting case of small deformation ε→ 0 only the first term Eq. 9
has a finite contribution recovering the expected linear behavior
σ(ε) ≈ Eε with the initial stiffness. In the opposite limit ε→ +∞

only the last term Eq. 11 survives which expresses that after the
number K of allowed slip events the fibers still keep load and a
linear behavior emerges

σ(ε) ≈ aKE(ε − S(a, k)〈ε(1)th 〉) (12)

With the asymptotic stiffness Ea � aKE. On the right hand side
〈ε(1)th 〉 denotes the average slip threshold in the initial state of the
bundle. Between the two limits, at intermediate strains the second
term Eq. 10 controls the macroscopic response as fibers gradually
undergo more and more slip events.

The constitutive behavior of the stick-slip bundle is illustrated
in Figure 2 for several values of the maximum number K of slip
events at a fixed value of the stiffness parameter a � 0.8. For the
explicit calculations we considered exponentially distributed slip
thresholds with the probability density function

p(σ th) � λe−λσth , (13)

where the parameter λ is set to λ � 1. This disorder distribution
has the advantage that all the expressions of Eqs 9–11 can be
obtained analytically. When presenting the results we rescale the
stress σ and strain ε with the fracture strength σ0c and ε0c of a
simple equal load sharing FBM of the same threshold distribution
where fibers break when the load exceeds their strength. Note that
the constitutive equation of this classical FBM coincides with
σ0(ε) of Eq. 9. It can be seen that at intermediate strains a plastic
behavior emerges which gets more pronounced for higher values
of K, i.e. the hardening curves tend to asymptotic straight lines
according to Eq. 12 which are preceded by longer and longer
plateau regimes in spite of the degrading stiffness. The model can
also account for the ultimate breaking of fibers after completing

FIGURE 2 | Constitutive behavior of the stick-slip bundle with quenched
disorder of the sliding thresholds according to Eq. 8 including both cases of
remaining stiffness (continuous lines) and ultimate failure of fibers (dashed
lines) after completing K slip events. The arrows highlight unloading
curves, which start at different strains εm of the constitutive curve of the
softening bundle of K � 5. The value of the stiffness parameter is a � 0.8.

FIGURE 3 | The effect of the value of the stiffness parameter a on the
macroscopic behavior of a bundle where all fibers are allowed to perform
K � 10 stick-slip cycles. Constitutive curves of hardening (continuous lines)
and softening (dashed lines) bundles are also included. The slip
thresholds are exponentially distributed. Fibers keep their final stiffness so that
all bundles are hardening even if the asymptotic regimes are not visible for the
lowest a.
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the allowed number K of stick-slip cycles by omitting the term of
σK(ε) in Eq. 8. Fiber breaking implies that in the limit ε→∞ the
load bearing capacity of the bundle gradually diminishes so that
σ(ε)→ 0 follows, however, increasing the number of slip events K
a broader plastic plateau emerges similar to the hardening
bundles (see Figure 2).

2.1.2 Effect of the Varying Fiber Stiffness on the
Macroscopic Response of Stick-Slip Bundles
The value of the stiffness parameter a has an important effect on
the overall behaviour of the system. It can be inferred from Eqs 5,
6 that for the stiffening case a> 1 consecutive slip events rapidly
follow each other so that the asymptotic regime Eq. 12 is reached
at a relatively low strain. Decreasing a at a constant value of K, the
plastic regime preceding hardening gets more-and-more
extended (see Figure 3 for illustration). For the lowest values
of the stiffness parameter a the hardening regime is approached
only at very high strains which hinders the precise structure of the
σ(ε) curves in Figure 3. That’s why we further analyze the
emergence of the plateau regime at low a values in Figure 4
using logarithmic scale on the horizontal axis presenting also the
partial loads σk(ε) of the subsets of fibers of different failure
indices. It can be observed that lowering the stiffness parameter,

the plastic plateau develops as a steady regime decorated with
some oscillations. It can be seen that for higher a values, where the
stiffness slowly degrades, the curves of σk(ε) strongly overlap
each other and their peak load rapidly decreases with k. As a
decreases the steady state emerges because the σk(ε) curves get
more-and-more separated while their peak load increases
approaching σc of the classical FBM, which coincides with
σk�1(ε). In the limit of a→ 0 the steady stress regime
disappears because the σk(ε) functions become almost
completely separated (see Figure 4D).

The separation of the σk(ε) curves in the low a limit also
reveals that their functional form is essentially the same,
determined by the constitutive equation of the classical fiber
bundle model σk�0(ε). The overall shape of the constitutive curve
of FBMs has a high degree of robustness for a broad class of
disorder distributions [2], which implies the robustness of the
macroscopic behaviour of the stick-slip FBM presented above,
against the distribution of slip thresholds p(ε(1)th ).

It is a very important consequence of the stick-slip dynamics
that upon unloading σ→ 0 the bundle a permanent deformation
εr remains which depends on the maximum deformation εm
reached before unloading sets on. If fibers keep their last stiffness
value after K stick-slip cycles, the permanent deformation

FIGURE 4 | Emergence of the plateau regime as the stiffness parameter a decreases at a fixed value of the maximum number K � 5 of stick-slip cycles allowed for
fibers. The partial loads σk(ε) Eqs 9–11 kept by the subsets of fibers which have suffered exactly k slip events are also shown for k � 0, 1, 2,3, 4, 5 for four different values
of the stiffness parameter a: (A) 0.8, (B) 0.5, (C) 0.2, and (D) 0.05. The constitutive curve of the entire bundle σ(ε) is also presented for both hardening (continuous red
line), and softening (dashed red line). On the horizontal axis logarithmic scale is used due to the large strains involved at low a.
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monotonically increases and it has an upper limit εmax
r , which can

be realized if the unloading starts along the asymptotic linear
regime of a hardening bundle. The value of εmax

r can be obtained
from Eq. 12 using the condition σ(εmax

r ) � 0, which yields

εmax
r � S(a,K)〈ε(1)th 〉. (14)

For intermediate starting points εm, the remaining
deformation εr can be determined by applying the condition
σ(εr) � 0 in the constitutive equation Eq. 8 taking also into
account that along the unloading curve no slip events occur.
This leads to the final form

εr �
∑K−1

k�1 a
kS(a, k)∫εm/S(a,k)

εm/S(a,k+1) ε1p(ε1)dε1 + aKS(a,K)∫εm/S(a,K)
εmin
th

ε1p(ε1)dε1
1 − P(εm) +∑K−1

k�1 ak ∫εm/S(a,k)
εm/S(a,k+1) p(ε1dε1) + aK ∫εm/S(a,K)

εmin
th

p(ε1)dε1
,

(15)

which converges to εmax
r in the limit εm →∞. Note that the

starting point of unloading εm appears in the upper bound of the
integrals. The permanent deformation εr of hardening bundles is
presented in Figure 5 for several values of the maximum slip
number K. It follows from Eqs 14, 15 that for increasing the
number of slip events K and decreasing the stiffness parameter a,
hardening bundles store a higher plastic deformation, which is
also supported by the numerical results of the figure.

Examples of unloading curves are presented in Figure 2 for the
case of softening bundles, where fibers break after K slips. Since
no slip can occur under a decreasing load, the unloading curves
are always straight lines and their slope, i.e. the unloading
modulus decreases with increasing εm. The analytic expression

of the unloading modulus Eu coincides with the denominator of
Eq. 15 multiplied by the initial stiffness E of fibers

Eu � E[1 − P(εm) +∑K−1
k�1 a

k ∫εm/S(a,k)

εm/S(a,k+1)
p(ε1)dε1

+ aK ∫εm/S(a,K)

εmin
th

p(ε1)dε1]. (16)

The expression shows that the unloading modulus Eu at a
given εm is the weighted average of the moduli Eak of the subsets
of fibers with slip numbers k � 0, 1, . . . ,K , where the weights are
determined by the distribution p(ε1) of the slip thresholds. In the
limit εm →∞, the unloading modulus Eu converges to the
asymptotic value Eu → Ea � EaK .

For the unloading modulus of softening bundles the last term
inside the brackets has to be skipped to take into account the
ultimate breaking of fibers. It can also be inferred from Figure 2
that the permanent deformation of softening bundles is not
monotonous, i.e. the εr(εm) function has a maximum and
decreases when unloading along the tail of the softening
regime of the constitutive curve σ(ε). This behavior can be
realized in Figure 2 by the changing order of the end points
of the unloading curves. Figure 5 demonstrates that even the
maximum value of the remaining deformation of softening
bundles is significantly smaller than the corresponding
maximum permanent deformation εmax

r of the hardening ones.
It follows from Figure 4 that once a plastique plateau can be

identified, its extension is practically the same for hardening (no
breaking) and softening (breaking after K slips) bundles. At a
given parameter set a,K , the extension of the plateau can be
characterized by the asymptotic value εmax

r of the remaining
deformation Eq. 14 of hardening bundles. It is interesting to
note that in the case of a> 1 the value of S(a,K) in Eq. 14
converges to S ≈ 1/(1 − a−1) for K→∞, which implies a finite
limit of the permanent deformation

εmax
r → 1

1 − a−1
〈ε(1)th 〉, (17)

and hence, of the extension of the plateau, when fibers get stiffer
after slip events. However, for the case of stiffness degradation
a< 1, the sum S(a,K) does not have a finite limit for large K
values giving rise to a monotonically broadening plateau as the
maximum slip number K increases.

3 FLUCTUATING MAXIMUM NUMBER OF
SLIP EVENTS

Fiber bundle models with stick-slip dynamics can be applied to
understand damage accumulation and fracture in a large variety
of systems where micro-scale restructuring plays a dominating
role. However, in the present form of the model the maximum
number of allowed stick-slip cycles is fixed for all the fibers, which
is a very strong constraint and limits the applicability of themodel
under realistic conditions. In this section we extend the model to
capture the effect of the fluctuating slip number K.

FIGURE 5 | Permanent deformation εr of hardening (continuous lines)
and softening (dashed lines) stick-slip bundles as function of the maximum
deformation εm reached before unloading started for different values of the slip
number K at the stiffness parameter a � 0.8. The remaining deformation
εr is scaled with the corresponding maximum value εmax

r of the hardening case
given by Eq. 14. For softening bundles a non-monotonous behavior is
obtained. Additionally, even the maximum values of the εr(εm) curves fall
below the corresponding curves of hardening bundles.
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We assume that K is a random variable which is sampled from
a probability density function g(K) defined over the range
0≤K <∞ with the normalization condition

∑∞
K�0

g(K) � 1. (18)

Note that the possibility of fibers with K � 0 is included, which
implies that some fibers remain always intact during the loading
process.

The constitutive equation σ(ε) of the stick-slip fiber bundle
with fluctuating maximum number of slip events K can be
obtained by averaging the contributions of subsets of fibers of
constant K Eqs 9–11 with the distribution g(K)

σ(ε) � (g(0) + [1 − g(0)][1 − P(ε)])Eε+
∑∞
K�1

g(K)∑K−1
k�1

Eak ∫ε/S(a,k)

ε/S(a,k+1)
[ε − S(a, k)ε1]p(ε1)dε1+

∑∞
K�1

g(K)EaK ∫ε/S(a,k)

εmin
th

[ε − S(a, k)ε1]p(ε1)dε1.
(19)

The first term of the right hand side of Eq. 3 represents the
load kept by intact fibers taking into account that a fiber can be
intact either because it can never slip K � 0, or because it is
damageable K > 0 but at the current strain it has not experienced
any slip k � 0. The second term stands for those fibers which have
slipped exactly k times and still can undergo further stick-slip
cycles k<K with the same maximum value K, while the last one is
the contribution of the fibers which have completed all allowed
stick-slip cycles and still support load with their final stiffness.

g(K) � 〈K〉Ke−〈K〉
K!

, (20)

which we use for explicit calculations to demonstrate the
outcomes of the generic derivations. Here the parameter 〈K〉
denotes the average of the slip number K inside the bundle.
Assuming that flaws responsible for slip events occur in an
uncorrelated manner along fibers, the Poissonian distribution
controlled by the average 〈K〉 gives an adequate description of
the statistics of the maximum slip number K [42]. Figure 6
presents a comparison of the constitutive curves of the stick-slip
bundle with constant and Poisson distributed maximum number
of slip events in such a way that the constant Ks are set to be equal
to the average 〈K〉 of the Poissonian. It can be seen that the
functional form of the two sets of constitutive curves is practically
the same. For low values ofK � 〈K〉 the corresponding curves fall
relatively close to each other, however, deviations increase with
increasing 〈K〉. The reason is that the standard deviation of the
Poissonian distribution growth as the square root of the average����
〈K〉

√
so that at higher 〈K〉 the distribution Eq. 20 gets broader

and the fluctuations of K become more relevant. The fluctuating
K affects also the asymptotic form of σ(ε) of hardening bundles

σ(ε) ≈ Eε⎡⎣g(0) + ∑∞
K�1

g(K)aK⎤⎦ − E〈ε(1)th 〉∑∞
K�1

g(K)aKS(a,K),

(21)

which yields

Ea � E⎡⎣g(0) + ∑∞
K�1

g(K)aK⎤⎦ � E〈aK〉, (22)

and

FIGURE 6 | Comparison of the constitutive curves of stick-slip bundles
with constant (dashed lines) and fluctuating (continuous lines) maximum
number of slip events for the case of hardening at the stiffness parameter
a � 0.8. The constant K values are set to be equal to the average 〈K〉 of
the Poissonian distribution. A natural choice for g(K) is the Poisson
distribution.

FIGURE 7 | Comparison of the constitutive curves of stick-slip bundles
with constant (dashed lines) and fluctuating (continuous lines) maximum
number of slip events for the case of softening at the stiffness parameter
a � 0.8. The constant K values are set to be equal to the average 〈K〉 of
the Poissonian distribution.
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εmax
r � 〈ε(1)th 〉∑∞

K�1g(K)aKS(a,K)
〈aK〉 , (23)

for the asymptotic Young modulus Ea and for the maximum
value of the permanent deformation εmax

r , respectively. Note that
the average value 〈aK〉 is calculated with the distribution g(K) of
the maximum slip number K, while the average threshold 〈ε(1)th 〉
is determined by the disordered strength of fibers p(εth).

The constitutive response of softening bundles with
fluctuating maximum slip number can also be obtained from
Eq. 3 by skipping the last term, which represents the contribution
of fibers with failure index k � K . Figure 7 compares the behavior
of softening stick-slip bundles with constant and fluctuating
maximum slip numbers where the average 〈K〉 was set to be
equal to the fixed K values of the corresponding bundles. It is
interesting to note that contrary to the hardening case, deviations
of the corresponding constitutive curves are more pronounced
for small deformations. The position of the maxima of the
corresponding σ(ε) curves nearly coincide, however, bundles
of fluctuating K keep a lower load than their constant K
counterpart. As the deformation ε increases the curves cross
each other indicating the higher load bearing capacity of bundles
with fluctuating K. For large deformation ε→∞ the stress must
converge to zero with a constant maximum slip number,
however, the final stiffness of bundles with fluctuating K is not
zero. This is the effect of those fibers which are not allowed to
slide K � 0, resulting in a finite asymptotic stiffness
Ea � g(0)E � e−〈K〉E. Increasing the average slip number 〈K〉
the fraction of unbreakable fibers exponentially goes to zero
making the difference of constant and fluctuating K bundles
larger for low values of K (see Figure 7).

4 ANNEALED DISORDER OF FAILURE
THRESHOLDS

In materials with a complex micro-structure slip events may be
followed by a change of the local material properties. In our fiber
bundle model this behavior can be captured up to some extent by
assigning a new threshold value to the fiber after each slip event
from the same probability distribution p(σ th). This type of
annealed disorder leads to a constitutive behavior qualitatively
similar to the case of the quenched one, however, with a more
complicated dynamics. After k slip events the load σ kept by a
fiber is given by Eq. 4 of the general model construction, however,
now the stress threshold σ th is not fixed for the fiber, instead after
each consecutive slip event a new threshold is generated σ(i)th from
the same distribution p(σth). It has the consequence that the
threshold strains ε(1)th , ε(2)th , . . . , εkth of consecutive slips events can
be obtained as

ε(k)th � σ(k)
th

akE
� εk
ak
, (24)

where εk � σ(k)th /E are strain values which have the same
distribution p(εth) for the entire history of the fiber. Eq. 24
shows that although the stress thresholds σ(k)th are generated with
the same distribution, the corresponding strain values εk still have

to be transformed to obtain the strain thresholds, where fiber slips
occur. The constitutive behavior of a single fiber and the relation
of the variables ε(k)th and σ(k)th are illustrated in Figure 8.

Based on the above expressions the constitutive equation σ(ε)
of the entire bundle with a fixed number of allowed slip events K
can be cast into the form

σ � Eε[1 − P(ε)]+
E ∑K−1

k�1
ak ∫ε

εmin
th

∫ε−ε0

εmin
th

/∫ε−∑k

j�0εj/aj
εmin
th

∏k

j�1dεjp(εj/aj)⎡⎢⎢⎣1 − P⎛⎝ε −∑k
j�0

εj/aj⎞⎠⎤⎥⎥⎦⎛⎝ε −∑k
j�0

εj/aj⎞⎠+

+EaK ∫ε

εmin
th

/∫ε−∑k

j�0 εj/aj
εmin
th

∏k

j�1dεjp(εj/aj)⎛⎝ε −∑k
j�0

εj/aj⎞⎠.

(25)

where again the load bearing contributions of the subsets of fibers
of different slip numbers k � 0, 1, . . . ,K are summed up: the
first term represents the load kept by fibers which are intact k � 0
at the deformation ε; the second one is the sum of the
contributions of fibers which have undergone exactly 1≤ k<K
slip events, and the last term captures the load bearing capacity of
fibers after completing all the allowed K slip events. Note that the
products of probability density functions occur due to the
independence of consecutive slip events, additionally, the
upper bounds of the integrals have also complex dependencies.

The constitutive responses of stick-slip bundles with quenched
and annealed disorder are compared in Figure 9 for the case of
hardening with fixed values of the number of slip events K. It can
be observed that the two sets of curves have a qualitatively similar
behavior. For K � 1 there is no difference between the two types
of disorder so that the corresponding curves must coincide,
however, larger quantitative differences of quenched and
annealed responses are observed for higher K values. The
sequence of independent identically distributed failure
thresholds of annealed disorder gives rise to broader plateau
regimes with a higher value of the mean stress along the plateau.
For large deformation both sets of curves converge to asymptotic
straight lines whose slope Ea � aKE does not depend on the type
of disorder. Due to the qualitative similarities of the macroscopic
responses of quenched and annealed disorder stick-slip bundles,
we skip the details of further comparisons.

5 DISCUSSION

We presented an extension of fiber bundle models of stick-slip
dynamics incorporating the effect of stiffness change of the fibers
after slip events, and the fluctuations of the number of stick-slip
cycles fibers can experience under an increasing external load.
Stick-slip dynamics implies that when the load of a fiber exceeds
its local strength the fiber does not break, instead it slips which
increases its relaxed length. As a consequence, the load of the fiber
drops down to zero, however, the fiber retains its load bearing
capacity. The stick-slip FBM has a high degree of complexity
making it flexible to describe various materials’ behaviors. In
order to enhance the applicability of the model, we introduced a
parameter which controls the change of fibers’ stiffness after slip
events in a multiplicative way allowing for both gradual
degradation and stiffening. During their loading history fibers
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can undergo a sequence of stick-slip cycles. In our model
construction the failure thresholds where slip is activated can
be either fixed for the entire failure process of the fiber (quenched
disorder), or it can be sampled from a probability distribution
(annealed disorder) representing fixed structural disorder of
materials and the effect of the local change of the material’s
behavior after slip events, respectively. As another novel element
of our study, the maximum number of slip events is treated as a
random variable inside the bundle sampled from a probability
distribution. The total number of slip events allowed and the
threshold loads where slip is activated are independent random
variables. After completing all the stick-slip cycles a fiber can
either keep its final stiffness or it can suffer ultimate breaking,
which result in global hardening and softening of the bundle in
the limit of high deformation, respectively.

We analyzed the model in the mean field limit, i.e. global load
sharing (GLS) was assumed. However, in stick-slip FBMs GLS
does not imply equal load on fibers, because at a given strain fibers
of the bundle can have different relaxed lengths and stiffness
values. We derived closed analytic forms for the macroscopic
constitutive response of the bundle both for quenched and
annealed disorder of the slip thresholds. These results showed
that on the macro-scale the bundle exhibits a plastic behavior, i.e.
the σ(ε) curves develop a plateau regime which becomes broader
with increasing number of slips. We analyzed in details the role of
the changing stiffness of fibers in the emergence of the plastic
plateau. Our calculations revealed that the stiffness parameter
controls the degree of overlap of the contributions of fiber subsets
of different failure index. In the limit of low stiffness parameter
a≪ 1, the plastic plateau is decorated with well separated
maxima, while for slowly degrading stiffness a(1 and high
values of the slip number K a smooth horizontal plateau is
obtained.

Releasing the load on the bundle, a permanent deformations
remains, which increases monotonically with the maximum
deformation reached before unloading started for hardening
bundles, while in the softening case a non-monotonous
behavior is obtained. The permanent deformation of softening

bundles proved to be smaller than that of their hardening
counterpart. The asymptotic value of the permanent
deformation of hardening bundles can be used to characterize
the extension of the plateau regime at different stiffness
parameters a. Our calculations revealed that increasing the
number of allowed slips K the extension of the plateau has a
finite limit for stiffening bundles a> 1, while it diverges for
stiffness degradation a< 1.

We showed that fluctuations of the number of stick-slip cycles
allowed for fibers affect the behavior of both hardening and
softening bundles. Comparing hardening bundles of constant and
fluctuating slip numbers with the same average value revealed
that larger fluctuations result in a narrower plastic regime
affecting also the asymptotic stiffness and the permanent
deformation of the bundle. For softening bundles the

FIGURE 8 | Constitutive behavior of a single fiber with annealed disorder of the slip thresholds. The value of the stiffness parameter is a � 0.8 so that the fiber
stiffness gradually decreases (compare to Figure 1). The consecutive thresholds σ(k)th are drawn from the same probability distribution p(σth), then the corresponding
strain thresholds ε(k)th are obtained from Eq. 24.

FIGURE 9 |Comparison of the constitutive curves of hardening stick-slip
bundles with quenched (dashed lines) and annealed (continuous lines) failure
thresholds for several values of the fixed number of allowed slip events K at the
stiffness parameter a � 0.8.
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fluctuations of the slip number result in lower and higher load
bearing capacities at small and large deformations, respectively,
compared to their constant slip number counterparts.

Annealed disorder of slip thresholds results in a qualitatively
similar macroscopic response to quenched disorder, however, its
description involves a higher mathematical complexity.

Here we focused on the effect of the changing stiffness and
fluctuating slip number of fibers on the macroscopic behavior of a
stick-slip FBM, and demonstrated that varying its parameters the
model is capable to capture several aspects of the macro-scale
consequences of stick-slip dynamics. The constitutive curves with
the softening regimes and oscillations along the plateau can only
be realized in strain controlled experiments. Under stress
controlled loading slip events are followed by a load
redistribution inside the bundle which can induce further slips
and eventually can trigger an entire avalanche of slipping fibers
until the bundle gets stabilized. As to the next, we are going to
explore the effect of the varying stiffness and fluctuating slip
number on dynamics and statistics of slip avalanches, which can
have a relevance for the understanding of restructuring
avalanches of granular materials and of earthquakes.

Although, the model is complex, still it could be further
extended to fit to specific applications. For instance, when
consecutive slip events result in the accumulation of internal
damage of fibers, the degradation of fibers’ stiffness may be
accompanied by the reduction of fibers’ strength. This
correlation of local strength and stiffness can be captured by
the model in such a way that at slip events fibers get a new failure
threshold (annealed disorder) from a distribution which has the
same functional form as the original one, however, its average is
gradually reduced. Due to its flexibility, the model can serve as a
starting point to develop more realistic micro-mechanical models
of carbon nanotube reinforced polimeric composites where the
high damping ability of the material originates from the stick-slip
occurring at the CNT-matrix interface. Our approach can
complement recently developed micro-mechanical models of
CNT nanocomposites [43–45] providing an efficient

framework for the representation of two sources of disorder
(local strength and slip number), degradation and stiffening
after slip events, and softening or hardening after the
maximum slip number is reached. Work in this direction is in
progress.
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