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Impact-induced transition from damage to perforation
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We investigate the impact-induced damage and fracture of a bar-shaped specimen of heterogeneous materials
focusing on how the system approaches perforation as the impact energy is gradually increased. A simple model
is constructed which represents the bar as two rigid blocks coupled by a breakable interface with disordered
local strength. The bar is clamped at the two ends, and the fracture process is initiated by an impactor hitting
the bar in the middle. Our calculations revealed that depending on the imparted energy, the system has two
phases: at low impact energies the bar suffers damage but keeps its integrity, while at sufficiently high energies,
complete perforation occurs. We demonstrate that the transition from damage to perforation occurs analogous to
continuous phase transitions. Approaching the critical point from below, the intact fraction of the interface goes
to zero, while the deformation rate of the bar diverges according to power laws as function of the distance from
the critical energy. As the degree of disorder increases, farther from the transition point the critical exponents
agree with their zero disorder counterparts; however, close to the critical point a crossover occurs to a higher
exponent.
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I. INTRODUCTION

Under a slowly increasing mechanical load materials typi-
cally undergo damaging and suffer ultimate failure at a critical
load. The degree of materials’ disorder has been found to
play an essential role in the evolution of the fracture process
[1–3]: at high disorder cracks nucleate already at relatively
low load levels resulting in a gradual accumulation of dam-
age as the load increases so that global failure occurs as the
culmination of damaging. This stable cracking is accompa-
nied by the emission of crackling noise [4], which proved
to have a scale-free statistics with a high robustness against
materials’ details [5–9]. The evolution of the fracture process
has also been found to obey time-to-failure power laws when
approaching failure addressing the possibility of forecasting
the imminent catastrophic event [10–13]. In the opposite limit
of low disorder, ultimate failure is preceded by only a small
amount of damage, an unstable crack emerges which gives
rise to an abrupt failure [3].

Experimental and theoretical studies have revealed that
fracture of disordered materials shows interesting analogies
to phase transitions and critical phenomena [3,14,15]. In par-
ticular, loaded solids can be considered to be in a metastable
state [16] so that the point of failure has been interpreted as
a nucleation process in a first-order phase transition near a
spinodal [14,17,18]. Other studies suggested that the transi-
tion from damage to fracture of highly disordered materials
is analogous to continuous phase transitions due to the uni-
versal scaling laws emerging in the system near the critical
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point [19–23]. Recently, it has been clarified that tuning the
amount of materials’ disorder a transition occurs from brittle
to quasibrittle behaviors, which proved to be continuous for
long-range stress redistribution [24–29].

Studies of the phase transition nature of fracture phenom-
ena have mostly been focused on uniaxial quasistatic loading
conditions. However, both the time evolution and the final
outcome of fracture processes also depend on how the load
is applied on the specimen. For instance, in the usual Charpy
impact test of dynamic fracture [30–33], the specimen is
clamped at the ends and a hammer attached to the arm of a
pendulum hits it in the middle resulting in a dynamic three
point bending. Under such boundary and loading conditions,
the damage localizes to a relatively thin layer of the spec-
imen giving rise to a single growing crack. Depending on
the energy of the hit, either the crack can terminate and the
specimen suffers only partial failure, or it runs to the opposite
boundary breaking the specimen into two pieces. This impact-
induced transition from damage to complete perforation is
driven by the interplay of materials disorder and the inho-
mogeneous stress field emerging due to the bending loading.
In the present paper we study this transition as the energy
of impact is varied. Based on a simple stochastic interface
model of bending-induced breaking of bar-shaped specimens,
we demonstrate that the transition is analogous to continuous
phase transitions. Approaching the critical energy of perfora-
tion the fraction of the intact cross section goes to zero, while
the deformation rate diverges according to power laws as a
function of the distance from the critical point. We show that
the critical exponents exhibit a crossover when the degree of
disorder is varied; however, the transition remains continuous
even in the limit of zero disorder.
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FIG. 1. Model of the specimen under three-point bending. The
specimen is composed of two rigid blocks of extensions a and b
coupled by an elastic interface. The interface is discretized in terms
of breakable fibers with stochastic strength. The deformation of the
bar due to impact is characterized by the deflection δ of its middle
point. The impact loading results in a linear deformation profile along
the interface, where the top and bottom fibers have the smallest l1 and
largest lN length, respectively.

II. STOCHASTIC INTERFACE MODEL

To investigate the damage-perforation transition in impact
loading processes, we use a simple model of the three-point
bending setup of bar-shaped specimens. In the model the spec-
imen is represented by two rigid blocks of side length a and
b, which are glued together with a thin deformable interface
of width l0 � b. Clamping of the ends of the specimen is
ensured by fixing the upper outer corners of the blocks around
which they can perform rigid rotation. External loading is
exerted by an impactor which hits the bar in the middle with
a velocity pointing downward as illustrated in Fig. 1. As a
consequence, the bar gets deflected in such a way that the
entire deformation is accommodated by the elastic interface
between the blocks. In order to capture fracturing of the bar,
the interface is discretized by means of a bundle of parallel
fibers of number N and length l0, placed equidistantly between
the blocks. The fibers do not have a bending rigidity, hence,
they suffer only stretching when the bar is deflected. Fibers are
assumed to have a linearly elastic behavior up to a threshold
deformation εi

c, i = 1, . . . , N where they break irreversibly.
Disorder of the material is represented such that individual
fibers are characterized by an identical Young modulus Y ;
however, their breaking threshold is a random variable sam-
pled from a probability density function p(εc).

Due to the rigidity of the blocks the deformation of the
specimen can be represented by a single variable δ, which is
the deflection of the middle point of the bar. For illustration of
the geometrical setup and the loading condition see Fig. 1. At
a finite value of δ > 0 the interface fibers suffer elongation �l ,
which increases from top to bottom resulting in the opening
of the interface. Based on the geometrical setup of Fig. 1, the
actual length of fibers li can be expressed as

li = l1 + 2δ
a

b

i − 1

N − 1
, i = 1, . . . , N, (1)

where index i identifies the position of fibers starting from the
top of the interface. The length of the first fiber l1 reads as
l1 = l0 + 2(b − √

b2 − δ2). Finally, the local elongation
�li = li − l0 of fibers can be cast into the form

�li = 2b − 2
√

b2 − δ2 + 2δ
a

b

i − 1

N − 1
, (2)

which yields a linear deformation profile εi = �li/l0 along the
interface.

Fracture is initiated by a collision with a body of mass m
which hits the bar in the middle with an initial velocity v0. For
simplicity, we assume that the mass of the specimen is neg-
ligible compared to the impactor; furthermore, the impactor
and the bar stay in contact during the entire fracture process.
Hence, the initial kinetic energy E0 = 1/2mv2

0 imparted to the
system will be partly transformed into the elastic energy Eel of
the elongated fibers, and it gets partly dissipated, Edis, by the
breaking fibers. The energy balance of the collision process
can be written in the form

E0 = Ek (δ(t )) + Eel (δ(t )) + Edis(δ(t )), (3)

at any time t as the system evolves. On the right-hand side
of Eq. (3) the first term Ek denotes the kinetic energy of the
impactor

Ek = 1
2 mv2 (4)

moving at velocity v, which can be expressed as the derivative
of the deflection v = dδ/dt of the specimen.

As the deflection increases fibers gradually get deformed
and eventually break when exceeding their local breaking
threshold. The elastic energy eel stored by a single fiber of
elongation �l can be obtained as eel = ( ac

2Nl0
)Y �l2, where the

cross-sectional area ac/N is assigned to the fiber with c = 1
being the unit thickness of the sample. Hence, the energy Eel

stored in the deformation of the entire bundle at deflection δ

can be expressed analytically in terms of the disorder distribu-
tion of fibers as

Eel (δ) = ac

2Nl0
Y

N∑
i=1

[1 − P(εi(δ))]�li(δ)2. (5)

Here P(x) represents the cumulative distribution of breaking
thresholds so that the term [1 − P(εi(δ))] is the probability
that the fiber at location i along the interface remained intact
at the deflection δ. The energy Edis dissipated by the broken
fibers can be obtained as

Edis = ac

2Nl0
Y

N∑
i=1

∫ �li (δ)

0
p(x)x2 dx, (6)

assuming that the elastic energy stored in a fiber at the instant
of its breaking is consumed to create the corresponding crack
surface.

In order to study the effect of the degree of materials’ dis-
order on the damage-perforation transition, for the breaking
thresholds we introduce a uniform distribution of the form

p(εc) = 1/(2W ) for ε0
c − W � εc � ε0

c + W. (7)

The distribution p(εc) is centered on ε0
c , which denotes the

average strength of fibers. The value of ε0
c is fixed in all the
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FIG. 2. Probability distribution p(εc ) of the breaking thresholds
for three different values of the width W/ε0

c = 0.25, 0.5, 0.75. The
average strength of fibers ε0

c is fixed; however, the degree of disorder
can be tuned by varying the width W of the distribution. The value
of W increases from top to bottom.

calculations; however, the degree of disorder of the system
can be controlled by varying the width of the distribution W
in the range 0 � W � ε0

c . The disorder distribution p(εc) is
illustrated in Fig. 2 for several values of W .

As the bar gets deflected during the impact process, a linear
deformation profile builds up along the interface according
to Eq. (2). In the absence of disorder W = 0 all breaking
thresholds are the same, εi

c = ε0
c (i = 1, . . . , N ), so that the

fiber at the bottom of the interface (i = N ) breaks first. As a
consequence, a crack starts and advances upwards until the
last fiber (i = 1) breaks. However, in the presence of disorder
W > 0, the local strength εi

c and strain εi together determine
the order of breaking so that the breaking sequence of fibers
becomes random along the interface. Inverting Eq. (2) we can
determine the deflection values δi

c where the individual fibers
break,

δi
c = δ

(
i, εi

c

)
, i = 1, . . . , N. (8)

Note that the deflection thresholds δi
c depend on both the

position i and strength εi
c of the fiber, which are independent

variables. As the bar gets gradually deflected, fibers break
in the increasing order of their deflection thresholds δi

c, (i =
1, . . . , N ) resulting in a random sequence of breaking events
along the interface in the linear deformation profile.

Computer simulation of the impact process is performed
in the following way: in the initial state random threshold
values εi

c (i = 1, . . . , N) are assigned to each fiber from the
distribution (7). The deflection thresholds δi

c are determined
from Eq. (8), which are then sorted into ascending order. The
dissipated Edis and elastic Eel energies are then calculated
from the discrete form of Eqs. (5) and (6) as a function of δ.
To analyze the damage-perforation transition, and to quantify
the role of disorder, numerical calculations were performed
varying the number of fibers in a broad range N = 103–107

at several values of the disorder parameter W/ε0
c ∈ [0, 1].

The geometrical layout of the specimen was fixed to a = 1,
b/a = 2.5, and l0/a = 0.02.

0.0
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FIG. 3. The evolution of the energies during an impact process
at the critical impact energy E0 = Ec as the function of deflection δ

(black lines). In the final state Ec is completely dissipated by fiber
breaking, hence, Eel (δc ) = 0 and Edis(δc ) = Ec. Simulations were
performed for an interface of N = 106 fibers with W = ε0

c for the
threshold distribution (7). The red symbols highlight the case of a
subcritical impact at E0 ≈ Ec/2.

III. ENERGETICS OF THE LOADING PROCESS

When the impactor hits the bar with an initial kinetic en-
ergy E0, the bar gets deflected and the interface fibers start to
break. If the input energy is low, the damage process stops at
a maximum deflection δm where the interface suffers only a
partial breaking keeping the integrity of the sample. When the
maximum deflection δm is reached, the impactor stops; hence,
the sum of the elastic and dissipated energies must be equal to
the initial energy E0 of impact

E0 = Eel (δm) + Edis(δm). (9)

Inserting Eqs. (5) and (6) into Eq. (9) we can determine the
initial impact energy E0 needed to achieve a maximum de-
flection δm. When E0 is sufficiently high, the damage process
does not stop, and all fibers break so that the specimen gets
perforated. This first occurs at the critical impact energy Ec,
where deflection stops right at the breaking of the last fiber,
with the largest critical deflection δi

c, defining the critical
deflection δc of the system. It follows that the critical energy
Ec is equal to the total dissipated energy Edis(δc) needed to
break through the entire interface.

The evolution of the energies stored in deformation Eel (δ)
and dissipated by fiber breaking Edis(δ) and the remaining
kinetic energy Ek (δ) of the impactor are illustrated in Fig. 3
as a function of the deflection δ of the specimen at the crit-
ical energy E0 = Ec for a system containing N6 fibers at the
highest disorder W/εc

0 = 1. The remaining kinetic energy of
the impactor Ek (δ) was obtained as

Ek (δ) = E0 − [Eel (δ) + Edis(δ)], (10)

where the impact energy E0 is determined from Eq. (9) at
δm = δc Since the disorder distribution in the example extends
down to zero strength values, breaking starts already at a very
small deflection. It can be observed in Fig. 3 that the dissipated
energy Edis monotonically increases, while the elastic energy
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FIG. 4. The remaining velocity vr of the impactor as a function
of the imparted energy E0. In the damage phase the impactor stops
vr = 0 at a partial failure of the specimen, while beyond the perfora-
tion limit E0 > Ec it keeps moving after the specimen broke into two
pieces. The impactor is assumed to have a unit mass.

Eel has a maximum at a well-defined deflection value. The
remaining kinetic energy Ek monotonically decreases reach-
ing zero at the critical deflection. The figure also highlights
the energetics of a subcritical impact E0 ≈ Ec/2 where the
bar suffers damage in the form of fiber breaking but does
not perforate. Since the elastic and dissipated energies are
fully determined by the deflection of the bar δ, these curves
coincide with their counterparts obtained at the critical input
energy E0 = Ec. However, at the maximum deflection δm,
indicated by the end of the red curves, the kinetic energy is
zero since the impactor stops.

In the supercritical phase E0/Ec > 1 the specimen per-
forates, and hence, the impactor does not stop. The curves
of the elastic and dissipated energies still coincide with the
ones obtained at the critical point E0/Ec = 1; however, the
kinetic energy does not decrease to zero. Instead, the impactor
continues moving with the remaining energy Ek attained at the
critical deflection δc. This supercritical regime is illustrated
by the so-called ballistic diagram of the system in Fig. 4
where the remaining velocity vr of the impactor is plotted as a
function of the input energy. The value of vr was determined
as

vr =
√

2

m
(E0 − Ec), for E0 � Ec. (11)

The two phases of the impact process are also highlighted
in Fig. 4: in the damaged phase, below the critical impact
energy, the impactor stops vr = 0 at the maximum deflection
δm reached, while the perforated phase is characterized by
a finite value of the remaining velocity vr > 0 since after
breaking the bar the impactor retains a finite fraction of its
initial energy.

IV. EFFECT OF DISORDER AND OF THE FINITE
NUMBER OF FIBERS ON THE CRITICAL POINT

It is a crucial question how materials’ disorder affects the
impact-induced fracture of specimens. Based on the disorder

1.0
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1.2

1.3

E
c/E

c(
W

=0
)

0.0 0.2 0.4 0.6 0.8 1.0

W/ 0
c

FIG. 5. The critical energy Ec of perforation as a function of
the amount of disorder W/εc

0. The continuous line represents the
analytical solution Eq. (12), while the symbols stand for numerical
measurements. Ec is divided by the critical energy of the zero disor-
der case.

distribution (7) and on the expression of the dissipated energy
(6) the critical energy Ec can be easily obtained. Since the
energy dissipated by the breaking of a single fiber depends
only on its breaking threshold εc but not on the corresponding
deflection δc, the integral of Eq. (6) simplifies to integration
over the range of the εc values. Hence, the disorder depen-
dence of the critical energy Ec can be cast into the form

Ec = ac

12W l0

[(
εc

0 + W
)3 − (

εc
0 − W

)3]
. (12)

It follows that Ec monotonically increases from Ec(W =
0) = (ac/2l0)(ε0

c )
2

at zero disorder to Ec(W = ε0
c ) =

(2ac/3l0)(ε0
c )

2
at the highest one. It can be observed in

Fig. 5 that the results of numerical measurements agree
very well with the analytical expression (12) of the critical
energy.

Since the critical energy Ec is an integrated quantity of the
entire sample, it has only very low fluctuations when calcu-
lated from single samples using a finite number N of fibers to
discretize the interface. However, the deflection values where
the damaging starts δd and perforation occurs δc do have a
strong dependence both on the number of fibers N and on
the degree of disorder W . In order to quantify these effects,
we performed computer simulations of the impact process
varying N over four orders of magnitudes at several values
of W . For a single sample the damage threshold δd and the
critical deflection δc were identified as the deflection values
where the first and last fiber breaking occur, respectively.
Then these values were averaged over 1000 samples at each
parameter set.

It can be observed in Figs. 6(a) and 6(b) that both the dam-
age threshold δd and the critical deflection δc depend on the
number of fibers N used to discretize the interface. However,
δd decreases, while δc increases converging to well-defined
asymptotic values δd (∞,W ) and δc(∞,W ) in the N → ∞
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FIG. 6. The effect of the number of fibers N and the degree of
disorder W on the damage threshold δd and on the critical deflection
δc of the system. The damage threshold δd (N,W ) (a) and the critical
deflection δc(N,W ) (b) are presented as function of N for several val-
ues of W . Both quantities converge to asymptotic values δd (∞,W )
and δc(∞,W ) in the limit N → ∞. The deviation from the asymp-
totic value has a universal power-law dependence on the number of
fibers in (c) and (d). The bold straight lines represent power laws of
exponent −1/2. Rescaling the deviations by an appropriate power of
W , the curves obtained at different disorders can be collapsed on top
of each other. This scaling is demonstrated for δc(N,W ) in (e). The
asymptotic values of the damage threshold and critical deflection as
a function of W are shown in (f).

limit. Note that both quantities are normalized by their zero
disorder counterparts

δ0
d = a

[√
1 + bl0ε0

c

a2
− 1

]
, (13)

δ0
c = l0ε0

c

2

√
4b

l0ε0
c

− 1, (14)

which do not depend on N . It can be seen that increasing the
amount of disorder W , the asymptotic values δd (∞,W ) and
δc(∞,W ) more and more deviate from the zero disorder val-
ues. Figures 6(c) and 6(d) demonstrate that the convergence
of the damage threshold δd (N,W ) and of the critical deflec-
tion δc(N,W ) to the corresponding asymptotic values shows
interesting universal features; i.e., at any value of W > 0 the
distances δd (N,W ) − δd (∞,W ) and δc(∞,W ) − δc(N,W )
tend to zero as a universal power law of the number of fibers
N . The bold straight lines in the figures represent power laws

of exponent −1/2. The value of the exponent does not depend
on the degree of disorder; however, the curves get shifted with
respect to each other for increasing W . Figure 6(e) shows that
rescaling the critical deflections δc with an appropriate power
η of the degree of disorder W , the curves obtained at different
W values can be collapsed on the top of each other. (The same
systematics holds also for the damage threshold δd , not shown
in the figure.) Based on the above numerical analysis we can
cast the N and W dependence of the damage threshold and of
the critical deflection into the following scaling forms:

δd (N,W ) = δd (∞,W ) + AW ηN−μ, (15)

δc(N,W ) = δc(∞,W ) − BW ηN−μ, (16)

where the scaling exponents have the values η = 1/2 and
μ = 1/2.

Equations (15) and (16) highlight that the asymptotic val-
ues of the damage and perforation thresholds both depend
on the degree of disorder W . We determined δd (∞,W ) and
δc(∞,W ) in such a way that they were finely tuned to obtain
the best straight lines in Figs. 6(c) and 6(d) on a double loga-
rithmic plot. The final outcome is presented in Fig. 6(f), where
both the asymptotic damage threshold and critical deflec-
tion are normalized by their zero disorder counterparts given
by Eqs. (13) and (14). It can be observed that for growing
disorder the damaging of the interface starts earlier, while per-
foration is reached at a higher deflection if a sufficient amount
of energy is exerted to the system. An important outcome of
the analysis is that for a sufficiently fine discretization the
results do not depend on the number of fibers.

In the following study of the perforation transition the
number of fibers of the discretization was fixed to N = 106.

V. APPROACH TO THE CRITICAL POINT

In order to understand how the system approaches the
critical point of perforation, numerical calculations were per-
formed varying the input energy E0 below Ec at several values
of the degree of disorder W . Figure 7 presents the maximum
deflection δm reached during the impact process as a func-
tion of the imparted energy E0. It can be observed that δm

monotonically increases with E0 up to the critical deforma-
tion δc = δm attained at E0 = Ec. However, the deflection rate
δ′

m = dδm/dE0 is not monotonous; i.e., it can be inferred from
the curves that starting from a relatively high value δ′

m first
decreases at low energies reaching a finite minimum which
is then followed by a growing deformation rate and seems
to diverge as the critical energy is approached. Note that
although the critical energy Ec is an increasing function of
the degree of disorder W (see Fig. 5); i.e., higher energy is
needed to break the sample, at the same fraction E0/Ec of Ec

the maximum deflection δm takes a larger value for higher W .
Gradually increasing the energy of impact, the increasing

final state deformation is accompanied by a growing damage
of the interface. To characterize the damage state of the bar
we determined the fraction of intact fibers n = Ni/N , where
Ni denotes the number of surviving fibers when the maximum
deflection is reached at E0. Figure 8 illustrates that n is a
monotonically decreasing function of the imparted energy E0

starting from one and converging to zero as the critical point of
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FIG. 7. Maximal deflection δm of the bar reached as a function of
the impact energy E0 for several disorder strengths W . The value of
δm is nondimensionalized by division with the critical deflection δ0

c

of the zero disorder case. The value of W increases from bottom to
top.

perforation Ec is approached. Note that at lower disorder the
n(E ) curves start with a constant regime n = 1, since the final
state deflection has to surpass the damage threshold δm > δd

to initiate the breaking of fibers. The figure also demonstrates
that at a given fraction of the critical energy E0/Ec the sur-
viving load bearing cross section n of the sample gets lower,
implying a higher damage d = 1 − n when the disorder is
higher.

In order to understand the nature of the transition from
partial failure to perforation, we analyzed in detail how the
system behaves in the vicinity of the critical point Ec. It has
been shown above that as the input energy increases, the criti-
cal point of perforation is approached through an acceleration
of the deformation of the bar in such a way that δ′

m diverges
in the limit E0 → Ec. It means that close to Ec the system
becomes more and more susceptible to the gradual increase of
the impact energy responding with a rapidly growing deflec-
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FIG. 8. Fraction of intact fibers n = Ni/N as a function of the
impact energy E0 for several values of the degree of disorder W . The
value of W increases from right to left.
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FIG. 9. Derivative of the maximal deflection δm with respect to
the impact energy E0 as a function of the relative distance from
the critical point (Ec − E0)/Ec for several values of the degree of
disorder W . The dashed lines represent power laws of exponent 1/2
and 2/3. As the disorder W increases the crossover point between the
two power-law regimes shifts to the right. The value of W increases
from left to right.

tion. For a quantitative characterization of this susceptibility,
we determined the deflection rate δ′

m by numerical differ-
entiation of the δm(E0) curves for several disorder strengths
W . Figure 9 demonstrates that for zero disorder W = 0 the
deflection rate diverges as a power law of the distance from
the critical point

δ′
m ∼ (Ec − E0)−γ , (17)

where the exponent γ has the value γ = 1/2. Note that the
quality of the power-law approximation is excellent; for a
system of N = 106 fibers a straight line is obtained on a
double logarithmic plot over eight orders of magnitude. It is
important to emphasize that at finite disorder W > 0 when
the fibers have a stochastic variation of strength, the power-
law divergence prevails; however, a crossover occurs between
two regimes of different exponents: farther from Ec the value
of the power-law exponent coincides with its zero disor-
der counterpart γ = 1/2; however, close to the critical point
the deflection accelerates characterized by a higher exponent
γ = 2/3.

The emergence of scaling in the vicinity of the critical point
is further supported by the behavior of the fraction of intact
fibers n. Figure 10 demonstrates that reploting n as a function
of the distance from the critical point Ec − E0 an excellent
power law is obtained for the zero disorder case

n ∼ (Ec − E0)β. (18)

The value of the exponent is β = 1/2. In the perforation phase
E0 > Ec the fraction of intact fibers n is identically zero, while
in the phase of partial failure it has a nonzero value n > 0
going to zero as a power law of the distance from the critical
point when approaching Ec. Due to this behavior, n can be
considered as the order parameter of the transition and β is
the order parameter exponent. At finite disorder W > 0, the
qualitative behavior of the curves is similar to the deflection
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of the degree of disorder W . The dashed lines represent power laws
of exponent 1/2 and 2/3. The value of W increases from left to right.

rate, i.e., the power-law functional form prevails; however,
a crossover occurs again between two different exponents.
Close to failure n approaches zero with a higher exponent
β = 2/3; however, farther from the critical point the exponent
takes its zero disorder value β = 1/2 (see Fig. 10).

Comparing Figs. 9 and 10 it can be observed that the
position of the crossover point �∗ depends on the degree
of disorder: As the disorder increases the crossover where
the exponents γ and β switch to their higher value occurs
earlier at larger distances from the critical point. Using the
data of the deflection rate in Fig. 9 we determined the value
of the crossover point �∗ as the position of intersection of
two fitted straight lines of exponents 1/2 and 2/3 in a dou-
ble logarithmic representation. The results are presented in
Fig. 11, where �∗ is plotted as a function of W . It can be
observed that approaching the limit of zero disorder �∗ goes

10
-7

10
-5

10
-3

10
-1

*

10
-4

10
-3

10
-2

10
-1

1

W/ 0
c

FIG. 11. The value of the crossover point �∗ as a function of the
degree of disorder W/εc

0. The straight line represents a power law of
exponent 2.0.

to zero since the entire curves of n and δ′
m are characterized

by a single exponent of value 1/2. Increasing the degree of
disorder W , the value of �∗ rapidly grows and levels off
above W/εc

0 ≈ 0.15. The figure also demonstrates that along
the increasing regime the curve of �∗(W ) can be very well
approximated by a power law

�∗ ∼ W ξ , (19)

where the exponent is ξ = 2.0 ± 0.05. The saturation of the
crossover point �∗ implies that beyond a certain value of
W further increasing the amount of disorder does not have
a relevant effect. To understand the emergence of this be-
havior, the spatial structure of damaging has to be analyzed.
At zero disorder perforation occurs such that a crack starts
at the bottom of the interface and proceeds upwards as the
impactor moves forward. On the contrary, in the presence of
disorder W > 0, fibers break in a spatially random sequence
along the interface. Due to the interplay of the strain gradient
(2) and the disorder (7), a complex damage profile emerges
along the interface: at a given deflection δ highly deformed
fibers at the bottom of the interface are broken with a higher
probability forming a crack, while the ones on the top have a
high chance to be intact. The two regimes are separated by a
sparse sequence of broken and intact fibers which behaves as a
process zone ahead of the crack tip. As the degree of disorder
W is increased the process zone gets wider, and for sufficiently
large values of W it can span the entire interface. This situa-
tion of strong disorder occurs if at the deformation where the
top of the interface may get damaged, ε1(δ) > εc

0 − W , the
bottom of the interface may still be intact, εN (δ) < εc

0 + W .
Here ε1 and εN are the strains of the fibers at the top and
bottom of the bar, respectively. Making use of Eqs. (2) and
(7) and assuming that b � εc

0 + W the condition for strong
disorder can be cast into the form

W ∗ ≈ a2

2b

[√
1 + 4bεc

0

a2
− 1

]
. (20)

It follows that for W > W ∗ the disorder is so high that no
crack is formed, and damage can occur anywhere along the
interface although it is more probable to break fibers closer to
the bottom. The results imply that the relevance of disorder
in the damaging of the interface is determined together by the
geometrical layout of the sample a, b, by the average strength
of fibers εc

0, and by the width of the strength distribution W .
The crossover point �∗ depends on W only in the regime of
weak disorder W < W ∗. The value of W ∗ ≈ 0.22 obtained
from Eq. (20) has a reasonable agreement with the numerical
findings.

VI. DISCUSSION AND CONCLUSIONS

We investigated the impact-induced fracture of a bar-
shaped specimen with the aim to understand how perforation
occurs as the impact energy is gradually increased. In the
modeling approach the bar is represented as two rigid blocks
glued together with an elastic interface which can undergo
damaging as the bar deforms. The interface is discretized in
terms of a bundle of parallel fibers which allows for a simple
representation of materials’ disorder by the random strength
of fibers. We implemented the loading condition commonly
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used in the Charpy impact test to determine the fracture
toughness of materials; i.e., a dynamically induced three-point
bending test is considered.

Our analytical and numerical calculations showed that de-
pending on the imparted energy E0, the outcome of the impact
process can be classified into two states: at low values of
the impact energy the bar suffers only a finite deflection
accompanied by damage, resulting in a partial failure of the
specimen. However, exceeding a critical energy value Ec the
impact results in global failure breaking the specimen into two
pieces. The transition between the damaged and perforated
phases occurs at a well-defined critical energy.

In order to characterize how the transition occurs as the
impact energy is gradually increased, we studied the behav-
ior of the deflection rate and of the surviving cross section
when approaching the perforation critical point. Numerical
analysis revealed that the deflection rate diverges, while the
fraction of surviving fibers goes to zero as power laws of the
distance from the critical point analogous to continuous phase
transitions. The power-law behavior holds for any degree of
disorder with universal exponents; however, at finite disor-
ders a crossover occurs between two power-law regimes of
different exponents: farther from the critical point the critical
exponents coincide with their zero disorder counterparts, but
in the vicinity of the critical point both quantities are charac-
terized by a higher exponent. The crossover point proved to
have a power-law dependence on the degree of disorder in the
range of weak disorder, while it remains nearly constant for
strongly disordered samples.

The effect of the degree of disorder on the nature of the
transition from damage to complete breakdown has been stud-
ied in various types of systems [15,23,25,29,34–36]. These
investigations have revealed that below a certain degree of
disorder fracture becomes abrupt, so that to obtain power-law
scaling the amount of disorder has to exceed a threshold
value. On the contrary, it is a unique feature of our system
that even in the limit of zero disorder the damage-perforation
transition occurs analogous to continuous phase transitions
characterized by critical power laws. The reason for this
important difference is the loading condition. Our impact
loading is assumed to be applied under three-point bending
conditions so that the stress and strain of fibers are inhomoge-
neous increasing linearly with distance from the impact site.
Additionally, the advancing impactor gives rise to a loading
which is essentially strain controlled; i.e., the position of the
impactor determines the load but in such a way that fiber
breakings gradually release the load on the specimen. The
strain gradient in the specimen and the releasing effect of

breaking fibers together stabilize the damage process even in
the case of zero disorder. For the phase transition nature of
the damage-perforation transition the global response of the
system, ensured by the two rigid blocks of the bar, plays an
essential role. The main simplification of the model is that it
does not capture the stress concentration arising at the tip of
the propagating crack in real materials. However, the model
calculations imply that the damage-perforation phase transi-
tion should occur also in the presence of stress enhancements
due to the overall bending of the bar.

It can be seen from Eq. (2) that the magnitude of the strain
gradient is controlled by the geometrical layout of the sample;
i.e., the gradient is proportional to the ratio a/b of the side
lengths of the bar. Hence, in the limit of a/b → 0, for very
long and thin bars all fibers have nearly the same load. It
can be seen from Eq. (20) that in this limit the value of W ∗
separating weak and strong disorders tends to zero so that the
disorder-driven crossover disappears, and the system is always
in the strong disorder phase.

In our detailed study we considered uniformly distributed
breaking thresholds varying the degree of disorder through the
width of the distribution. Other members of the universality
class of thin-tailed distributions, decreasing rapidly away from
the average, like the Weibull and Gaussian distributions, are
expected to give rise qualitatively to the same fracture pro-
cesses [37]. In particular, we repeated the calculations with
the Weibull distribution varying the Weibull exponent, while
the scale parameter of the distribution was fixed, and obtained
the same results as in the uniform case. However, power-law
distributed disorder results in a higher degree of complexity.
Due to the fat tail of the threshold distribution the crossover
from weak to strong disorder may disappear in spite of the
strain gradient. Work in this direction is in progress.
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