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System-size-dependent avalanche statistics in the limit of high disorder
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We investigate the effect of the amount of disorder on the statistics of breaking bursts during the quasistatic
fracture of heterogeneous materials. We consider a fiber bundle model where the strength of single fibers is
sampled from a power-law distribution over a finite range, so that the amount of materials’ disorder can be
controlled by varying the power-law exponent and the upper cutoff of fibers’ strength. Analytical calculations
and computer simulations, performed in the limit of equal load sharing, revealed that depending on the disorder
parameters the mechanical response of the bundle is either perfectly brittle where the first fiber breaking triggers
a catastrophic avalanche, or it is quasibrittle where macroscopic failure is preceded by a sequence of bursts. In the
quasibrittle phase, the statistics of avalanche sizes is found to show a high degree of complexity. In particular, we
demonstrate that the functional form of the size distribution of bursts depends on the system size: for large upper
cutoffs of fibers’ strength, in small systems the sequence of bursts has a high degree of stationarity characterized
by a power-law size distribution with a universal exponent. However, for sufficiently large bundles the breaking
process accelerates towards the critical point of failure, which gives rise to a crossover between two power laws.
The transition between the two regimes occurs at a characteristic system size which depends on the disorder
parameters.
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I. INTRODUCTION

The disorder of materials plays a crucial role in fracture
phenomena when subject to mechanical loads. Experiments
and theoretical calculations revealed that under constant or
slowly varying external loads the fracture of heterogeneous
materials proceeds in bursts of local breakings [1–6]. Such
crackling events can be recorded in the form of acoustic
signals providing insight into the microscopic dynamics of the
fracture process [7–10]. Cracking bursts can be considered as
precursors of the ultimate failure of the system, so that they
can be exploited to forecast the impending catastrophic event
[10–18].

The intensity of the crackling activity has been found to
depend on the degree of materials’ disorder [11,19,20]: in the
limiting case of zero disorder, the ultimate failure occurs in an
abrupt way with hardly any precursory activity [21,22]. How-
ever, the presence of disorder gives rise to a gradual cracking
process where macroscopic failure occurs as a result of the
intermittent steps of damage accumulation [23–25]. Recently,
experiments have been performed on the compressive failure
of porous glass samples where the degree of heterogeneity
could be well controlled during the sample preparation [11].
These experiments have shown that increasing disorder gives
rise to a more intensive bursting activity with a higher number
of cracking events whose size spans a broader range. As a
consequence, the precision of failure forecast methods was
found to improve with increasing disorder [11].

Motivated by these recent findings, here our goal is to
investigate the statistics of crackling noise in the limiting case
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of extremely high disorder. The fiber bundle model (FBM)
provides an adequate framework [26–32] to study the statistics
of breaking avalanches allowing for a simple way to control
the degree of disorder [31,33–37]. In FBMs the sample is
discretized in terms of parallel fibers where controlling the
mechanical response, strength, and interaction of fibers var-
ious types of materials’ behaviors can be captured. Disorder
can be represented by the random strength of fibers while their
Young modulus is kept constant. In our study, high disorder is
realized by a power-law distribution of fibers’ strength over a
finite range where the amount of disorder can be controlled by
the exponent and by the upper cutoff of the strength values.

Assuming equal load sharing after fiber breakings, we
demonstrate that the fat-tailed microscale disorder has a sub-
stantial effect on the statistics of breaking bursts of fibers. In
particular, we show that the functional form of the burst size
distribution depends on the size of the bundle: when the upper
cutoff of fibers’ strength is infinite the burst size distribution
is a power law with a universal exponent. However, in the
case of finite upper cutoff strength, for small system sizes
the size distribution is identical with the one of the infinite
cutoff strength. Deviations start at a characteristic system
size beyond which a crossover occurs to another functional
form. We give an explanation of the system-size-dependent
avalanche statistics in terms of the extreme order statistics of
breaking thresholds.

II. FIBER BUNDLE MODEL WITH FAT-TAILED
DISORDER

We consider a bundle of N parallel fibers, which are
assumed to have a perfectly brittle behavior with a Young’s
modulus E and breaking threshold σth. The Young’s modulus
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is assumed to be constant E = 1 so that materials’ disorder
is captured by the randomness of the breaking threshold σth.
The strength of individual fibers σ i

th, i = 1, . . . , N is sampled
from a probability density p(σth). The amount of disorder in
the system can be controlled by varying the range σ min

th �
σth � σ max

th of strength values and by the functional form of
p(σth). FBMs with moderate amount of disorder have been
widely studied in the literature considering uniform, Weibull,
and Gaussian distributions making the avalanche statistics of
this universality class well understood [28,32].

To realize the limiting case of extremely high disorder, a
fat-tailed disorder distribution is considered; i.e., we imple-
ment a power-law distribution of breaking thresholds over the
range σ min

th � σth � σ max
th with the probability density

p(σth) =

⎧⎪⎪⎨
⎪⎪⎩

0, σth < σ min
th ,

Aσ
−(1+μ)
th , σ min

th � σth � σ max
th ,

0, σ max
th < σth.

(1)

In our calculations, the lower bound of thresholds σ min
th is

fixed to σ min
th = 1, while the amount of disorder is controlled

by varying the power-law exponent μ and the upper bound
σ max

th of thresholds. The value of σ max
th covers the range σ min

th �
σ max

th � +∞, while the disorder exponent is varied in the
interval 0 � μ < 1. For this choice of μ, in the limiting case
of an infinite upper bound σ max

th → ∞ the thresholds do not
have a finite average; hence, varying the two parameters μ

and σ max
th the amount of disorder can be tuned in the bundle

between the extremes of zero and infinity. Of course, at finite
cutoffs σ max

th , the average fiber strength 〈σth〉 is always finite;
however, the specific values of σ max

th and μ have a very strong
effect on the behavior of the system both on the macro-
and microscales. The cumulative distribution P(σth) can be
obtained from the normalized density as

P(σth) =

⎧⎪⎪⎨
⎪⎪⎩

0 σth < σ min
th ,

σ
−μ

th −(σ min
th )−μ

(σ max
th )−μ−(σ min

th )−μ , σ min
th � σth � σ max

th ,

1 σ max
th < σth.

(2)

After fiber failure, we assume that the excess load of
broken fibers is equally redistributed over the remaining intact
ones. Hence, the constitutive equation σ (ε) of the bundle can
be obtained from the general form σ (ε) = Eε[1 − P(Eε)] by
substituting the distribution function P(x) from Eq. (2)

σ (ε) =

⎧⎪⎨
⎪⎩

ε, 0 � ε � εmin,
ε(ε−μ−ε

−μ
max )

ε
−μ
min−ε

−μ
max

, εmin � ε � εmax,

0, εmax < ε.

(3)

For brevity, we introduce the notation εmin = σ min
th /E , εmax =

σ max
th /E , with E = 1, for the lower and upper bounds of

strength in terms of strain. The stress-strain relation of the
bundle is illustrated in Fig. 1. Perfectly linear behavior is
obtained up to the lower bound εmin, since no fibers break
in this regime. After fiber breaking sets on, the constitutive
curve becomes gradually nonlinear and develops a maximum
whose position εc and value σc define the tensile strength of
the bundle. Both the critical strain εc and stress σc depend on
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FIG. 1. Stress-strain curves σ (ε) of the bundle (a) for a fixed
value of the upper cutoff εmax = 40 varying the exponent μ, and (b)
for a fixed μ = 0.7 exponent varying the upper cutoff εmax by means
of the multiplication factor λ, where εmax = λεc

max. Approaching
the phase boundary, in both cases the system becomes more and
more brittle; i.e., the maximum of σ (ε) is preceded by a smaller
and smaller amount of fiber breakings. For comparison, the curve
corresponding to the case of an infinite upper cutoff εmax → ∞ is
also presented.

the degree of disorder characterized by μ and εmax:

εc = εmax(1 − μ)1/μ (4)

and

σc = μ(1 − μ)1/μ−1ε1−μ
max

ε
−μ
min − ε

−μ
max

. (5)

Recently, we have shown that if the threshold distribution
(1) of the model is sufficiently narrow, already the first fiber
breaking can trigger the immediate failure of the entire bundle
[38]. It can be observed in Fig. 1 that this occurs when the
position of the maximum of the constitutive curve εc coincides
with the lower bound εmin of the fibers’ strength. It follows
that for all exponent values μ there exists a critical upper
bound εmax

c so that in the range εmax < εc
max the bundle exhibits

a perfectly brittle behavior. Perfect brittleness means that
under stress or strain controlled loading the breaking of the
weakest fiber gives rise to an immediate abrupt failure of the
bundle or in a softening behavior, respectively. The critical
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FIG. 2. Phase diagram of the system. The phase boundary sep-
arating the brittle and quasibrittle macroscopic response is given
by Eq. (6). Under stress controlled loading, in the brittle phase
the bundle suffers immediate abrupt failure at the breaking of the
weakest fiber, while in the quasibrittle phase failure is preceded by a
sequence of breaking bursts. For μ � 1 the bundle is always in the
brittle phase. The horizontal and vertical dashed lines indicate the pa-
rameter sets for which avalanche size distributions were determined
by computer simulations.

upper bound can be obtained from Eqs. (4) and (5) as

εc
max = εmin

(1 − μ)1/μ
. (6)

The results imply that at a given value of the exponent μ in
the parameter regime εmax > εc

max a quasibrittle response is
obtained where macroscopic failure is preceded by breaking
avalanches. The phase boundary separating the brittle and
quasibrittle behaviours of the system is given by the relation
(6). The phase diagram of the system is illustrated in Fig. 2
on the μ-εmax plane. Note that as the exponent μ approaches
1 from below the value of εc

max diverges so that the regime
μ � 1 is always brittle. When presenting results at a fixed
exponent μ, it is instructive to characterize the upper cutoff
εmax of fibers strength relative to the corresponding point
of the phase boundary εc

max(μ). Hence, we introduce the
parameter λ = εmax/ε

c
max, which can take any value in the

range λ � 1 (equality holds on the phase boundary between
the brittle and quasibrittle phases).

Recently, we have demonstrated that the fat-tailed mi-
croscale disorder gives rise to an anomalous size scaling of
the macroscopic strength of the bundle [38]. For finite upper
cutoffs of fibers’ strength εmax, the average strength of the
bundle 〈εc〉 was found to increase with the number N of
fibers as

〈εc〉 ∼ N1/μ. (7)

The usual decreasing behavior of strength [39,40] gets re-
stored beyond a characteristic system size Nc, which depends
on the disorder parameters as

Nc ∼ εμ
max. (8)

We could explain this interesting effect based on the extreme
order statistics of the strength of single fibers; i.e., we pointed
out that the bundle strength increases until the strongest
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FIG. 3. Series of bursts in a small system of N = 105 fibers at
the exponent μ = 0.8 for two different values of the upper cutoff
(a) λ = 100 and (b) λ = +∞. The size of bursts � is presented as a
function of the order number i of events. The yellow lines represent
the moving average of burst sizes � averaging over 25 consecutive
data points.

fiber dominates the ultimate failure of the system [38]. For
sufficiently small systems, at high cutoffs εmax, the strongest
fiber can be so strong that it can keep the entire load on the
system. Beyond the characteristic system size Nc, this is no
longer possible so that the average strength decreases with N .
In the following we show that the fat-tailed disorder of fibers’
strength gives rise also to a complex behavior of the statistics
of breaking bursts when the parameters μ and εmax are varied.

III. STATISTICS OF BREAKING BURSTS

Inside the quasibrittle phase, we analyze the fracture pro-
cess of the bundle under quasistatic loading, which is realized
by slowly increasing the external load to provoke the breaking
of a single fiber at a time. For simplicity, we assume that
the load of the broken fiber is equally redistributed over the
intact ones, which may trigger additional breakings, followed
again by load redistribution. As a consequence of the repeated
breaking and load redistribution steps, an avalanche emerges
which stops when all the remaining intact fibers are suffi-
ciently strong to keep the elevated load. Global failure occurs
in the form of a catastrophic avalanche which destroys the
entire system. The size � of the avalanche is defined as the
number of fibers breaking in the correlated trail.

A. Acceleration towards failure

Inside the brittle phase (see Fig. 2) the first avalanche
already triggers the immediate catastrophic failure of the sys-
tem. However, in the quasibrittle parameter regime the system
gradually approaches failure through a sequence of bursts
whose size � spans a broad range. Representative examples of
the series of bursts are shown in Fig. 3 for two different values
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FIG. 4. The average number of breaking fibers a(ε) (9) triggered
by the failure of one fiber due to the increase of the external load for
several values of the disorder exponent μ. The cutoff strength εmax

is fixed to εmax/εmin = 1000. All curves are presented from εmin to
the corresponding value of εc(μ, εmax). For μ → 0 the critical point
converges to εc = εmax/e.

of the upper cutoff λ = 100, λ = +∞ at the same exponent
μ = 0.8. For the infinite cutoff in Fig. 3(b) the burst size �

fluctuates; however, its moving average remains practically
constant. It means that in spite of the increasing external load
the system does not show any acceleration towards failure.
In fact, in this case the constitutive curve of the bundle (see
Fig. 1) does not have a maximum, it monotonically increases
until the last fiber breaks the bundle. Contrary to this, for a
finite upper cutoff in Fig. 3(a) the system approaches global
failure through an increasing average size of bursts. At the
critical point of failure a catastrophic avalanche emerges,
while the catastrophic event is absent when the cutoff strength
is infinite.

To understand the behavior of the burst sequence, it is in-
structive to calculate the average number a of fiber breakings
triggered immediately by the failure of a single fiber at the
strain ε [29,32]. The load σ = Eε dropped by the broken fiber
is equally shared by the intact ones of number N[1 − P(σ )],
giving rise to the stress increment �σ = σ/N[1 − P(σ )].
Multiplying �σ with the probability density p(Eε) of failure
thresholds and with the total number of fibers N , the average
number of triggered breakings a can be cast into the form

a(ε) = Eεp(Eε)

1 − P(Eε)
= μ

1 − (
ε

εmax

)μ . (9)

The right-hand side of the equation was obtained by substitut-
ing the PDF p (1) and the CDF P (2) of failure thresholds of
our model. The expression has to be evaluated over the range
εmin � ε � εc which is illustrated by Fig. 4 for several values
of the exponent μ at a fixed upper cutoff εmax = 1000. It can
be seen that as the system approaches the critical point of
global failure εc (4), the value of a increases to 1 indicating
the acceleration of the failure process and the onset of the
catastrophic avalanche at the critical point.

It follows from Eq. (9) that for an infinite upper cutoff
εmax → ∞, the average number of triggered breakings a takes

a constant value a = μ < 1, which implies stable cracking
and a constant average burst size as could be inferred from
Fig. 3(b). When the cutoff strength εmax is finite, for suffi-
ciently small strains ε the value of a still can be considered
constant a ≈ μ and the acceleration of the bursting process is
constrained to the vicinity of the critical point εc. Equation (9)
implies that the effect is more pronounced when εc � εmax,
which requires μ to be close to 1 and a large value of the cutoff
strength according to Eq. (4). Figure 4 shows this behavior for
μ = 0.85, where a remains close to μ for a broad range of
ε, while for smaller exponents μ a considerable acceleration
is observed from the beginning of the failure process. In the
limit μ → 0 the number of triggered breakings takes the form

a(ε) ≈ 1

ln (εmax/ε)
, (10)

while the critical point εc converges to εc = εmax/e (see also
Fig. 4).

Note, however, that in the derivation of a implicitly an
infinite system size is assumed. Later we show that to obtain
acceleration towards failure and a catastrophic avalanche at
finite cutoff strengths, the size of the system N has to exceed
a characteristic value, which is a consequence of the fat-tailed
disorder.

B. Size distribution of bursts

The statistics of breaking bursts can be characterized by
the distribution p(�) of their size �. The complete size
distribution p(�) can be obtained analytically by substituting
a(ε) into the generic form [29,32,41]

p(�)

N
= ��−1e−�

�!

∫ xc

0
p(x)a(x)

× [1 − a(x)]�−1e�a(x)dx, (11)

where for the upper limit of integration xc we have to insert
the strength of the bundle. Utilizing the approximation �! 	
��e−�

√
2π�, in the limiting case of an infinite upper cutoff

with a(ε) = μ the burst size distribution can be cast into a
simple analytic form

p(�)

N
	 �−τ e−�/�∗

. (12)

A power law of exponent τ = 3/2 is obtained followed by an
exponential cutoff. Here �∗ denotes the characteristic burst
size, which controls the cutoff of the distribution

�∗ = 1

μ − 1 − ln μ
. (13)

This result means that at an infinite upper cutoff of fiber
strength εmax = +∞ the size distribution of bursts always
follows a simple power law of a universal exponent τ = 3/2,
where the value of the disorder exponent μ controls only the
cutoff burst size �∗. Using the Taylor expansion of logarithm
around 1, it can easily be shown that as μ → μc = 1 the cutoff
burst size has a power-law divergence

�∗ ∼ (μc − μ)−ν, (14)

with a universal exponent ν = 2. Burst size distributions
obtained by computer simulations of a bundle of size N = 106
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FIG. 5. Inset: Size distribution of bursts p(�) for a bundle of
N = 106 fibers at several values of the disorder exponent μ when
the cutoff strength of fibers is infinite εmax = +∞. Main panel: Data
collapse of the curves of the inset obtained by rescaling with a power
of the distance from the critical point μc = 1. Along the horizontal
axis the scaling exponent is ν = 2 in agreement with Eq. (14), while
along the vertical axis the product ντ is used with τ = 3/2. The
straight line represents a power law of exponent 3/2.

fibers are presented in the inset of Fig. 5 for several μ values
using an infinite cutoff strength. An excellent agreement is
obtained with the analytical predictions. The main panel of
Fig. 5 demonstrates that rescaling the distributions with (μc −
μ)−ν the curves of different μ can be collapsed on the top
of each other, which confirms the validity of the scaling law
(14). In Ref. [42] we also showed that approaching μc = 1 at
εmax = +∞, a continuous phase transition emerges from the
quasibrittle to the brittle phase, and we determined the critical
exponents of the transition. Note that the modified gamma
form of Eq. (12) of the burst size distribution has also been
proposed for earthquake magnitude distributions to maintain
a finite strain release rate in natural earthquake populations
[43,44].

To characterize the statistics of breaking bursts at finite
cutoff strength εmax, we determined the burst size distribution
p(�) for several parameter sets along two straight lines inside
the quasibrittle phase of the bundle (see Fig. 2). Figure 6
presents p(�) varying the disorder exponent μ at a constant
finite upper cutoff εmax. It can be seen that approaching
the phase boundary μ → μc(εmax) the burst size distribution
tends to a power-law functional form followed by an expo-
nential cutoff consistent with the generic expression (12). The
value of the power-law exponent is the same τ = 3/2 as for an
infinite cutoff. As μ decreases from its critical value, the burst
size distribution exhibits a crossover between two power-law
regimes, i.e., the power law of exponent τ = 3/2 is followed
by a steeper one of exponent τ = 5/2 in the regime of large
bursts. For decreasing μ the crossover burst size �0 separating
the two power-law regimes, shifts to lower values. In the limit
μ → 0 almost the complete size distribution can be described
by a single power law of exponent 5/2; however, the crossover
burst size takes a small but finite minimum value.
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FIG. 6. Burst size distributions p(�) in a bundle of size N = 107

at a fixed upper cutoff εmax = 10 varying the value of the exponent
μ. The two straight lines represent power laws of exponent 3/2
and 5/2.

For moderate amount of disorder, it has been shown for
fiber bundles under equal load-sharing conditions that the size
distribution of avalanches has a power-law functional form
with a universal exponent τ = 5/2 [29]. The result proved
to be valid for those threshold distributions extending down
to zero strength and having a sufficiently fast decreasing tail,
where the constitutive curve σ (ε) has a quadratic maximum
[29,41]. In our system, the reason for the crossover of the burst
size distribution p(�) between two power laws of exponent
3/2 and 5/2 is that the lower bound of fibers’ strength εmin has
a finite nonzero value. Additionally, close to the boundary of
the quasibrittle phase, bursts are generated in a narrow strain
interval since the breakdown point εc falls close to εmin. It was
pointed out in Refs. [14,45] that in such cases the crossover
burst size �0 can be obtained as

�0 = 2

a′(εc)(εc − εmin)2
, (15)

where a′(εc) denotes the derivative of a(ε) at the breakdown
point. To apply this generic result to our truncated fat-tailed
disorder distribution, we substitute Eqs. (4) and (9), which
yields

�0 = 2εmax(1 − μ)1/μ−1

[εmax(1 − μ)1/μ − εmin]2
. (16)

This expression is valid for exponents 0 < μ � μc(εmax). It
can be seen in Eq. (16) that approaching the phase boundary
μ → μc(εmax), the crossover size diverges �0 → +∞, and
hence, the burst size distribution p(�) has a single power-law
regime of exponent τ = 3/2. The crossover to a higher expo-
nent τ = 5/2 for large bursts is observed away from the phase
boundary where �0 takes finite values (see Fig. 6). Starting
from Eq. (16), it can simply be shown that the divergence is
described by a power law

�0 ∼ (μc − μ)−γ , (17)

with a universal exponent γ = 2. To test the validity of this
prediction Eq. (17), we determined the value of �0 numeri-
cally as the crossing point of fitted power laws of exponents

053001-5



VIKTÓRIA KÁDÁR AND FERENC KUN PHYSICAL REVIEW E 100, 053001 (2019)

10

10
2

10
3

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

max

5.0
10.0

10

10
2

10
3

0

10
-1

1

c-

FIG. 7. Crossover burst size �0 as a function of the disorder
exponent μ for the cutoff strength εmax = 10. The arrow indicates
the position of the corresponding critical point μc. The inset presents
�0 as a function of the distance from the critical point μc(εmax) − μ

for two upper cutoffs on a double logarithmic plot.

3/2 and 5/2. Figure 7 demonstrates that the crossover burst
size �0 rapidly increases as μc is approached, and it has a
power-law dependence on the distance from the critical point
μc − μ, in agreement with Eq. (17). The exponent of the
fitted power law is γ = 1.87 ± 0.1, which falls close to the
analytical prediction.

IV. SIZE-DEPENDENT AVALANCHE STATISTICS

When the cutoff strength εmax is varied while keeping the
disorder exponent μ fixed, the burst size distribution exhibits
an even more complicated behavior. For a fixed μ, we express
the cutoff strength relative to the phase boundary using the
parameter λ = εmax/ε

c
max, which takes values in the range

λ > 1. Figure 8 presents p(�) for several values of λ at the
disorder exponent μ = 0.85, i.e., along the vertical dashed
line inside the quasibrittle phase of Fig. 2. It can be observed
that starting from a single power law of exponent τ = 3/2 at
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of 107 fibers. The two straight lines represent power laws of exponent
3/2 and 5/2. The case of an infinite upper cutoff λ = +∞ is also
included for comparison.
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FIG. 9. Size distributions p(�) of the first L bursts of a bundle
of N = 107 fibers varying L in a broad range at the fixed disorder
parameters μ = 0.8 and λ = 500. The complete distribution of the
entire failure process is also presented together with the distribution
of the last events just preceding global failure. The total number of
events is about 1.08 × 106. The two straight lines represent power
laws of exponents 3/2 and 5/2.

the phase boundary, p(�) shows again a crossover between
two power-law regimes, where the crossover burst size �0

shifts to lower values as λ increases. Starting from Eq. (16) it
is easy to show that �0 exhibits again a power-law divergence

�0 ∼ (λ − 1)−γ , (18)

when approaching the phase boundary λ → 1. The value of
the exponent γ is the same γ = 2 as in Eq. (17). However, a
significant difference, compared to the case of a constant cut-
off, is that far from the phase boundary, after some transients,
the steeper power-law regime of exponent τ = 5/2 gradually
disappears. A single power law remains with exponent τ =
3/2, as at the phase boundary Eq. (12), but with a significantly
lower cutoff burst size �∗.

It is important to note in Fig. 8 that at sufficiently large
cutoffs λ > 1000, the burst size distributions coincide with
the one corresponding to the infinite cutoff λ = +∞, in spite
of the fact that the system has a finite critical point εc. The
reason is that, at the μ exponent considered, the beginning of
the series of bursts is close to stationary as has been illustrated
in Fig. 3(a). Since the average number of triggered breakings
a(ε) is nearly constant over a broad range of strain ε, as λ

increases, the critical point is preceded by a shorter and shorter
accelerating regime, which has a diminishing contribution to
the entire distribution p(�).

To test this idea we analyzed in detail the statistics of burst
sizes in a bundle of size N = 107 at the disorder parameters
μ = 0.8 and λ = 500 where both power-law regimes are
present. Figure 9 shows the burst size distribution p(�, L)
evaluated in event windows containing the first L bursts, i.e.,
p(�, L) is the size distribution of bursts �i, i = 1, . . . , L, av-
eraged over several realizations of the disorder at a given value
of L. For comparison, the size distribution of the entire failure
process is also presented together with the one corresponding
to the case of an infinite cutoff λ = +∞ obtained at the same
system size N and μ exponent. It can be seen that up to the first
L ≈ 106 bursts, the distributions p(�, L) perfectly agree with
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FIG. 10. Size distribution of bursts p(�) for different system
sizes N at fixed values of the disorder parameters μ = 0.8 and
λ = 500. For small system sizes p(�) agrees with the corresponding
distribution of the infinite cutoff λ = +∞. Above a characteristic
system size a second power-law regime gradually develops for large
bursts.

the case of an infinite cutoff p(�,λ = +∞). Deviations from
p(�,λ = +∞) start around L ≈ 1.06 × 106 above which
gradually a steeper power-law regime develops. The result
confirms that in spite of the existence of a well-defined critical
point εc, for a broad event range the statistics of burst sizes is
consistent with the stationary process of the infinite strength
cutoff, and acceleration towards failure is restricted to the
close vicinity of εc. The argument is further supported by the
size distribution of the last bursts with event index greater
than L = 1.064 × 106, which are generated in the vicinity
of global failure. In this regime the functional form of p(�)
is consistent with what has been obtained for varying μ in
Fig. 6, i.e., a crossover emerges between two power laws of
exponents τ = 3/2 and τ = 5/2, as expected in the vicinity
of the critical point.

In Ref. [38] we have shown that for fat-tailed distributions
of fiber strength, the number of fibers N has a substantial
effect on the ultimate failure strength of the bundle: for small
system sizes the strongest fiber controls the macroscopic fail-
ure, and consequently the average bundle strength increases
with the system size N described by Eq. (7). The number
of fibers N has to exceed a characteristic value to observe
the usual decreasing trend towards the strength of the infinite
system given by Eqs. (4) and (5). Since at large λ the system
size N controls the behavior of the system at the critical
point, it follows that N must play a decisive role also for the
statistics of breaking avalanches. This is illustrated in Fig. 10,
which presents burst size distributions of bundles of different
sizes N at fixed values of the disorder parameters μ = 0.8
and λ = 500. It can be observed that for small N values, the
burst size distributions p(�) coincide with the corresponding
curve of a large system N = 107 obtained at the infinite cutoff
λ = +∞. Above the system size N ≈ 105 a second power-law
regime gradually develops as has been observed in Fig. 9 for
a single system size N = 107 with varying event window L.

The reason of this astonishing dependence of the statistics
of avalanches on the size of the system is that for small
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FIG. 11. Average size of the catastrophic avalanche 〈�c〉 as a
function of the system size N for several values of the upper cutoff λ

of fibers strength at a fixed exponent μ = 0.8.

system sizes, even for finite cutoff strength of fibers, global
failure occurs when the strongest fiber breaks. Consequently,
the entire sequence of bursts is close to stationary, and their
statistics is practically the same as for the infinite cutoff. The
existence of a finite critical point εc is realized only when the
system size N exceeds a characteristic value Nc. For bundles
with N > Nc global failure is preceded by an acceleration of
the failure process with increasing burst sizes. In this regime
macroscopic failure occurs in the form of a catastrophic
avalanche; however, the catastrophic event is completely ab-
sent for N < Nc. In order to quantify this crossover of the
avalanche statistics with respect to the size of the system N ,
we determined the average size of the catastrophic avalanche
〈�c〉 as a function of the size of the bundle N varying the
upper cutoff of fibers’ strength λ in a broad range. The size of
the catastrophic avalanche can be estimated as

〈�c〉 ∼ N[1 − P(εc)], (19)

so that if a well-defined critical bundle strength εc exists, a
linear dependence is obtained on the system size 〈�c〉 ∼ N .
Figure 11 shows that for low λ values the simulation results
are consistent with the above prediction. However, far from
the phase boundary λ > 1000, a more complex behavior is
obtained: for small system sizes 〈�c〉 does not depend on N ,
it takes a small constant value 〈�c〉 ≈ 7. The regular linear
increase with N is restored above a characteristic system
size Nc, which increases with λ. Figure 12 demonstrates that
rescaling N with the μth power of λ, the curves of 〈�c〉
obtained at different λ values can be collapsed on the top
of each other. The high-quality data collapse implies that
the characteristic system size Nc, separating the two types of
avalanche statistics, has a power-law dependence on λ as

Nc ∼ λμ. (20)

This characteristic value Nc is of course the same as the one
which controls the size scaling of the ultimate strength of the
bundle (8) [38]. It also follows that the event window analysis
presented in Fig. 9 can be performed only for system sizes
N > Nc, and the crossover event index Lc below which the
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FIG. 12. The same data as in Fig. 11 are presented in such a way
that along the horizontal axis the system size N is rescaled with λμ.
High-quality data collapse is obtained. The straight line represents a
power law of exponent 1.

burst size distribution is close to the one of the infinite cutoff
has the same dependence (20) on the disorder parameter.

V. DISCUSSION

The degree of materials disorder has a substantial effect
on the fracture of heterogeneous materials on both the micro-
and macroscales. When subject to a slowly increasing external
load, fracture proceeds in bursts which can be considered as
precursors of global failure. Failure forecast methods of the
imminent catastrophic failure strongly rely on the bursting
dynamics [11,46,47]. It has been demonstrated experimentally
that increasing amount of disorder gives rise to a more inten-
sive precursory activity, which then improves the quality of
forecasts [11,12].

In this paper we investigated the effect of the amount of
disorder on the microscopic dynamics of the fracture process
of heterogeneous materials in the framework of a FBM fo-
cusing on the limit of very high disorder. We considered a
power-law distribution of fibers’ strength where the degree of
disorder could be controlled by tuning the power-law expo-
nent and the upper cutoff of breaking thresholds. Assuming
equal load sharing after local breakings, we showed that
on the macroscale the mechanical response of the bundle is
either perfectly brittle where the bundle abruptly fails right
at the breaking of the first fiber, or it is quasibrittle where
macroscopic failure is approached through a sequence of
breaking bursts.The evolution of the crackling event series
and the statistics of burst sizes have a high importance for the
forecasting of the imminent failure of the bundle.

We showed that for an infinite upper cutoff of fibers’
strength, the sequence of bursts is stationary in the sense that
the average burst size is constant. Hence, the system does not
exhibit any sign of acceleration towards failure. Consequently,
a power-law burst size distribution is obtained, where the
disorder exponent only controls the cutoff burst size. For
finite upper cutoffs we showed that there exists a well-defined
critical point of global failure; however, it can be realized

only in sufficiently large systems. In small systems the global
strength of the bundle is controlled by the strongest fiber. This
peculiar behavior gives rise to an astonishing dependence of
the statistics of burst sizes on the size of the system: for small
systems the burst sequence proved to be close to stationary,
and hence, the burst size distribution coincides with the one
corresponding to the infinite upper cutoff of fibers’ strength.
For large systems the initially stationary sequence is followed
by an accelerating regime in the close vicinity of the critical
point, which gives rise to a crossover between two power laws
of the burst size distribution. Analyzing the dependence of the
average size of the catastrophic burst on the size of the bundle,
we pointed out that the transition between the two types of
burst size distributions occurs at a characteristic system size
which depends on the disorder parameters of the bundle.
The results can have relevance for the design of laboratory
experiments: when the microscale materials disorder has a
rapidly (exponentially) decaying distribution, the sample size
mainly affects the cutoff of the size distribution of bursts but
not its functional form. However, for fat-tailed disorder the
sample size has a strong effect on the functional form of
the burst size distribution so that the size of specimens in
laboratory tests has to be sufficiently large to reproduce the
acceleration of the burst sequence towards failure obtained in
field measurements.

We also demonstrated that for a moderate amount of disor-
der, i.e., varying the disorder parameters in the vicinity of the
phase boundary between the brittle and quasibrittle phases, a
crossover occurs between two power laws of exponents 3/2
and 5/2. The reason is that bursts are generated in a narrow
strain interval close to the critical point of macroscopic failure.
In this case the crossover burst size was found to have a
power-law divergence as the phase boundary is approached.

Our results set important limitations on the forecastability
of the imminent failure [11,17,18] of the system when the mi-
croscale disorder is fat tailed. We have demonstrated that even
if a considerable avalanche activity accompanies the failure
process, the collapse may not be predictable either because it
is controlled by the extreme order statistics of fibers’ strength,
or the accelerating regime preceding failure is too short. In
failure forecast methods accelerating precursors have to be
identified above a null hypothesis of stationary event rate, then
one needs to wait for a sufficient amount of data to define a
singularity with accuracy and precision at a finite time before
the time of ultimate failure [18]. The effect of high disorder
on the statistics of breaking bursts, revealed by our study, may
be a real limitation for practical applications of forecasting
methods based on acoustic or seismic precursors of failure
[18,48].

In the present study we focused mainly on the integrated
statistics of burst sizes considering all events up to failure.
The quantitative characterization of the evolution of the event
series towards failure requires further careful analysis, which
is in progress.
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