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Abstract.  We investigate the eect of the amount of disorder on the fracture 
process of heterogeneous materials in the framework of a fiber bundle model. 
The limit of high disorder is realized by introducing a power law distribution of 
fiber strength over an infinite range. We show that on decreasing the amount 
of disorder by controlling the exponent of the power law the system undergoes 
a transition from the quasi-brittle phase where fracture proceeds in bursts to 
the phase of perfectly brittle failure where the first fiber breaking triggers a 
catastrophic collapse. For equal load sharing in the quasi-brittle phase the 
fat tailed disorder distribution gives rise to a homogeneous fracture process 
where the sequence of breaking bursts does not show any acceleration as the 
load increases quasi-statically. The size of bursts is power law distributed 
with an exponent smaller than the usual mean field exponent of fiber bundles. 
We demonstrate by means of analytical and numerical calculations that the 
quasi-brittle to brittle transition is analogous to continuous phase transitions 
and determine the corresponding critical exponents. When the load sharing is 
localized to nearest neighbor intact fibers the overall characteristics of the failure 
process prove to be the same, however, with dierent critical exponents. We 
show that in the limit of the highest disorder considered the spatial structure 
of damage is identical with site percolation—however, approaching the critical 
point of perfect brittleness spatial correlations play an increasing role, which 
results in a dierent cluster structure of failed elements.
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1.  Introduction

Natural materials and most of the artificially made ones have an inherent disorder 
which appears at dierent length scales in the form of dislocations, flaws, microcracks, 
grain boundaries, or internal frictional interfaces [1]. When subject to mechanical load, 
this quenched structural disorder plays a decisive role in the emerging fracture process: 
disorder gives rise to strength reduction by introducing week locations where cracking 
can be initiated. For a fixed sample size the tensile strength is a stochastic variable 
described by a probability distribution [1–3]. Increasing the extension of samples a size 
eect emerges, i.e. the ultimate strength of disordered materials is a decreasing function 
of their size, which has to be taken into account in engineering design [3, 4]. The main 
benefit of disorder is that it stabilizes the fracture process, making it possible to arrest 
propagating cracks. As a consequence the fracture process of disordered materials is 
composed of a large number of crack nucleation—propagation—arrest steps which gen-
erate a sequence of precursory cracking avalanches. This crackling noise is of ultimate 
importance to work out forecasting technologies for natural catastrophes such as land-
slides and earthquakes, and for the catastrophic failure of engineering constructions  
[5, 6]. The degree of disorder present in materials aects fracture processes both on the 
macro- and micro-scales; however, detailed understanding of the relevant mechanisms 
is still lacking.

It is rather dicult to perform laboratory experiments precisely tuning the amount 
of a material’s disorder. The length scale of disorder was controlled by heat treatment 
in phase-separated glasses [7] which proved to have an eect on the roughness of the 
generated crack surface. Sub-critical crack propagation was investigated in a sheet of 
paper under a constant external load where the paper was softened by introducing 
holes in dierent geometries. It was found that the increasing disorder slows down the 
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propagation of the crack [8]. Recently, it has been shown for the compressive failure 
of porous materials that the amount of structural disorder is crucial for forecasting the 
global failure, i.e. the higher the disorder is the more intensive precursory activity is 
obtained, which improves the precision of forecasting [9].

In theoretical studies of the eect of quenched disorder on fracture, discrete models 
of materials are indispensable. In the framework of discrete models either random-
ness is introduced for the strength of cohesive elements or random dilution is applied 
on a regular lattice, where the amount of disorder is controlled by the width of the 
strength distribution [10–14] and by the degree of dilution [2, 15] respectively. In these 
investigations the fiber bundle model (FBM) is a very useful tool since it captures the 
relevant aspects of fracture processes but it is still simple enough to obtain analytical 
solutions and to design ecient simulation techniques [16, 17]. In the present paper 
we use fiber bundle modeling to investigate the limiting case of high disorder for the 
fracture process of heterogeneous materials. A power law distribution of fiber strength 
is considered over an infinite range where the exponent of the distribution controls 
the amount of disorder. We demonstrate that on varying the amount of disorder the 
system undergoes a transition from a quasi-brittle phase with precursory bursting 
activity to a perfectly brittle phase where the first fiber breaking triggers catastrophic 
failure. In the quasi-brittle phase the high disorder has interesting consequences both 
on the macro- and micro-scales: the ultimate strength of the bundle increases with the 
system size, which is controlled by extreme order statistics of fibers’ strength. Under 
quasi-statically increasing load the cracking bursts of fibers form a stationary sequence 
without any acceleration and signature of the imminent global failure of the system. 
Burst sizes are power law distributed, however, with a significantly lower exponent 
than with moderate disorder. Simulations revealed that even if strong stress concentra-
tion is introduced in the system by locally redistributing the load after breaking events, 
the overall behavior of the fracture process remains the same and the spatial structure 
of damage closely resembles percolation.

2. Fiber bundle model with strong disorder

In the model we consider N parallel fibers with linearly elastic behavior described by 
the same Young’s modulus E  =  1. Disorder is introduced in the system such that the 
failure threshold of fibers σth is a random variable, which takes values in the interval 

⩽σ σ <+∞th
min

th  according to the probability density function (PDF)

( )σ µσ= µ− −p .th th
1

� (1)

The lower bound σth
min has a finite value σ = 1th

min  but the strength values σth cover an 
infinite range. A very important feature of ( )σp th  is that the amount of disorder can 
be controlled by varying the exponent μ in such a way that increasing μ results in 
a lower disorder. In our study we focus on the parameter range ⩽µ<0 1, where the 
disorder is so high that even the first moment of the distribution (1) does not exist; 
however, normalizability is ensured (see figure 1(a) for illustration). As a first step, 
we assume that under an increasing external load σ when a fiber breaks its load is 
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equally redistributed over all intact fibers. In this equal load sharing (ELS) limit the 
constitutive equation  ( )σ ε  of the model can be obtained from the generic expression 

( ) [ ( )]σ ε ε ε= −E P E1  where P denotes the cumulative distribution function (CDF) of 
failure thresholds, and the term ( )ε− P E1  is the fraction of fibers that are intact at the 
deformation ε. For our model the constitutive equation  ( )σ ε  can be cast in the form

( )
    ⩽
   

⎧
⎨
⎩

σ ε
ε ε ε
ε ε ε

=
>µ−

E

E

for ,

for ,

0

1
0

� (2)

where the threshold strain ε0 has the value /ε σ= =E 10 th
min . Figure  1(b) shows that 

below ε0 linearly elastic behavior is obtained since no fibers can break. As breaking 
sets on for ε ε> 0, non-linearity of ( )σ ε  emerges, which gets stronger with increasing μ. 
It can be seen that on varying μ as a control parameter the constitutive behavior of 
the system has two qualitatively dierent regimes: for µ< 1 the non-linear increase of 

( )σ ε  implies a quasi-brittle response of the system where under stress controlled loading 
the fracture of the bundle would proceed by stable damaging as fibers gradually break. 
However, increasing μ above 1 the constitutive curve becomes decreasing beyond the 
threshold strain ε0, having a sharp maximum at ε0. This functional form implies that 
all fibers break immediately in a catastrophic avalanche as the external load surpasses 
the value εE 0. Since linear response is followed by sudden collapse the behavior of the 

Figure 1.  (a) Probability density of failure thresholds for several values of the 
control parameter μ. (b) Constitutive curve ( )σ ε  of the system for several dierent 
values of the exponent μ. In the parameter range 1µ<  the constitutive curve 

monotonically increases, while for 1µ>  it has a sharp maximum at 1th
minσ = . (c) 

Average critical strain cε  of the bundle where global failure occurs as a function of 
the system size N for several values of the exponent μ. The straight lines represent 
power law fits. (d) Exponent of the size dependence of the critical strain cε . The 
straight line represents the power law for exponent  −1.
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system is perfectly brittle in the parameter range µ> 1. The transition from the quasi-
brittle to the brittle phase occurs at the critical point µ = 1c  where the stress σ becomes 
constant σ ε= E 0, independent of the strain ε (see figure 1(b)).

3. Fracture strength

An interesting feature of the constitutive equation (2) is that in the quasi-brittle phase 
it does not have a local maximum so that it is monotonically increasing until the last 
fiber breaks. This has the consequence that even under stress controlled loading no 
catastrophic avalanche of breaking emerges so that in a finite bundle of N fibers the 
fracture strength σc and the corresponding fracture strain εc are determined by the 
breaking threshold of the strongest fiber. Hence, the macroscopic strength of the system 
is controlled by the extreme order statistics of fibers’ strength [18, 19]. The average 
failure strain εc  of the bundle can simply be obtained as the average value of the larg-
est threshold strain εth

max of fibers, where the relation σ ε= Eth th holds for the stress and 
strain thresholds of single fibers. According to the generic result of extreme order statis-

tics [18, 19] the average ε Nth
max  of the largest of N independent identically distributed 

random variables can be determined as

⎛
⎝
⎜

⎞
⎠
⎟ε ε= = −

+
−P

N
1

1

1
,Nc th

max 1
� (3)

where P−1 denotes the inverse of the cumulative distribution function P. Substituting 
the distribution function P of our model the above equation yields

/
/⎛

⎝
⎜

⎞
⎠
⎟ε =

+
≈
µ

µ
−

N
N

1

1
.c

1
1� (4)

The result shows that the strength of the bundle increases as a power law of the system 
size N, which is in a strong contrast with the usual decreasing strength of the disorder 
dominated size eect of heterogeneous materials. In the simulations εc  was determined 
by directly averaging the strain at which the last avalanche occurred. Figure 1(c) dem-
onstrates that the numerical results are consistent with the theoretical expectations 
and can be very well fitted by the power law ε ∼ αNc , where the exponent α has an 
excellent agreement with the analytical prediction /α µ= 1  (see figure 1(d)).

4. Crackling noise

The quasi-static loading of the sample is carried out by increasing the external load to 
provoke the breaking of a single fiber. The failure event is followed by the redistribu-
tion of load where each intact fiber receives the same load increment under ELS condi-
tions. The elevated load may give rise to additional breakings, and in turn the repeated 
steps of load redistribution and breaking can generate a failure avalanche. The size ∆ of 
the avalanche can be characterized by the number of fibers breaking in the correlated 
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trail. The microscopic origin of the perfectly brittle behavior for µ> 1 is that the first 
breaking event, i.e. the breaking of the weakest fiber immediately triggers an avalanche 
that cannot stop leading to catastrophic collapse. However, in the quasi-brittle phase 
the fracture of the bundle proceeds in a sequence of bursts with size ∆ spanning a 
broad range. It can be observed in figure 2(a) for a single sample that the sequence of 
breaking bursts has an astonishing stationarity, i.e. in spite of the increasing load the 
moving average of event sizes and their fluctuations remain practically constant. Note 
that the absence of a catastrophic avalanche means that even the last avalanche obeys 
the same statistics as all others. This behavior is in strong contrast to what is usually 
observed when the disorder is moderate: as the load increases the size of bursts spans 
a broader and broader range when approaching global failure so that the average event 
size rapidly increases towards failure [16, 20, 21].

The statistics of crackling avalanches is characterized by the distribution of their 
size ( )∆p , which is presented in figure 2(b) for several values of the exponent μ. Power 
law behavior is evidenced, which is followed by an exponential cuto. It can be observed 
in the figure that as μ approaches 1 the cuto burst size increases and finally diverges 
so that for µ = 1 the complete distribution can be described by a single power law. The 
most remarkable feature of the results is that the exponent ξ of the power law regime 
is /ξ = 3 2—significantly lower than the usual mean field exponent /ξ = 5 2 of fiber bun-
dles found for a broad class of disorder distributions. The lower value of the exponent 
implies a higher fraction of larger avalanches during the breaking process of the highly 
disordered system.

In order to understand the absence of acceleration in the avalanche activity and 
the emergence of the low exponent of the size distribution it is instructive to calcu-
late the average number a of fiber breakings triggered immediately by the failure of a 
single fiber at the strain ε [20, 21]. Since the load σ ε= E  dropped by the broken fiber 
is equally shared by all the intact fibers of number [ ( )]σ−N P1  the stress increment σ∆  
they experience is / [ ( )]σ σ σ∆ = −N P1 . Eventually, a follows by multiplying σ∆  with 
the probability density ( )εp E  of failure thresholds and with the total number of fibers N

( ) ( )
( )

ε
ε ε

ε
µ=

−
=a

E p E

P E1
.� (5)

The right-hand side of the equation was obtained by substituting the PDF p and the 
CDF P of failure thresholds of our model. It follows that in our FBM the probability 
of triggering avalanches does not depend on where the system is during the loading 
process, and hence, from the viewpoint of avalanches all points of the constitutive 
curve are equivalent to each other. This mechanism explains the absence of increasing 
bursting activity in figure 2 with increasing load. Note that a catastrophic avalanche 
occurs when ( )σ >a 1 [20], which can only be obtained in our case for µ> 1. Hence, for 
any µ< 1 the system approaches failure in a stable way, all fibers breaking in finite 
avalanches.

The complete size distribution ( )∆p  can be obtained analytically by substituting 
( )εa  into the generic form [20–22]

p

N
p x a x a x x

e

!
1 e d

x
a x

1

0

1
c( ) ( ) ( )[ ( )] ( )∫

∆
=
∆
∆

−
∆− −∆

∆− ∆� (6)
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where for the upper limit of integration xc we have to insert the strength of the bundle. 
Inserting our PDF and the expression (5) of the average number of triggered failures a, 

and utilizing the approximation ! e 2π∆ ∆ ∆∆ −∆�  the analytic result can be cast into 
the final form

( ) / /∆
∆− −∆ ∆�

p

N
e .3 2 c� (7)

A power law of exponent /ξ = 3 2 is obtained followed by an exponential cuto, in agree-
ment with the numerical results. Here, ∆c denotes the characteristic burst size which 
controls the cuto of the distribution. The value of ∆c depends solely on the control 
parameter

µ µ
∆ =

− −
1

1 ln
.c� (8)

To demonstrate the consistency of the results in figure 2(c) we present the scaling plot 
of the avalanche size distributions where the two axes of figure 2(b) are rescaled with 
powers of ∆c, using κ = 1 and /κξ = 3 2 for the exponents on the horizontal and vertical 
axes respectively. The high quality data collapse underlines that the analytical solution 
provides a comprehensive description of the avalanche activity of the model.

Figure 2.  (a) Sequence of bursts emerging during the quasi-static loading of a 

bundle of N  =  105 fibers with 0.9µ = . The burst size ∆ is plotted as a function 
of the order number i of the crackling event. The bold yellow line represents the 
moving average of the event size considering 100 consecutive bursts. No acceleration 
towards global failure can be pointed out. (b) Size distribution of avalanches p( )∆  
for several values of the exponent μ. Power law functional form is obtained, 
followed by an exponential cuto. The straight line represents a power law with 
exponent 3/2. (c) Data collapse analysis of the avalanche size distributions. The 
data presented in (b) is replotted such that the two axes are rescaled with powers 
of the characteristic burst size c( )µ∆ .
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It has been shown in equal load sharing FBMs that the probability distribution of 
the size of bursts has a power law functional form where the exponent exhibits a high 
degree of universality with respect to the form and amount of disorder: for disorder dis-
tributions, where the constitutive curve ( )σ ε  of the system has a quadratic maximum, 
the burst size exponent is 5/2 [16]. Reducing the disorder by making the distribution 
of fibers’ strength narrower, a crossover is obtained to a lower exponent 3/2 [13, 20, 
23, 24]. The same happens when constraining the avalanche statistics to windows 
shrinking towards global failure—hence, the crossover has been suggested as an early 
signature of the imminent failure event [24]. An important consequence of our results 
is that at any point of the loading process avalanches of the same size range can pop 
up, and hence, the distribution does not evolve, both the exponent and the cuto size 
remain the same wherever we measure them during the loading process.

5. Critical exponents

As the control parameter μ approaches the critical value µc from below the system 
undergoes a phase transition from quasi-brittle to perfectly brittle response. We used 
analytical calculations and finite size scaling of the simulated data to determine the 
critical exponents of the transition. Based on the Taylor expansion ( ) /+ ≈ −x x xln 1 22  
in (8) it can be shown that as μ approaches 1 the cuto burst size has a power law 
divergence as a function of the distance from the critical value µ = 1c

( ) /µ µ∆ ∼ − σ− ∆,c c
1

� (9)

where the value of the cuto exponent of avalanche sizes is /σ =∆ 1 2.
Of course, in a finite system of N fibers deviations occur from the analytical solution 

of the infinite system size where even the critical point µc has size dependence. In order 
to obtain a detailed characterization of how the system approaches the critical point of 
perfectly brittle behavior with increasing μ, we determined the average burst size ∆  
as a function of μ for several system sizes N. For ∆  first the average burst size of sin-

gle samples is calculated as the second moment = ∑ ∆M i i2
2 of burst sizes divided by the 

first one = ∑ ∆M i i1 , and then this quantity is averaged over a large number of samples. 
Note that the largest burst is always omitted in the summation. Figure 3(a) presents 
that for low μ values the average burst size falls close to one, indicating that nearly all 
fibers break one-by-one. When approaching the brittle phase larger and larger bursts 
can emerge and ∆  develops a sharp peak in the vicinity of µ = 1c . The finite values 
∆ > 0 observed for µ> 1 are obtained due to the finite size eect on the critical point. 
Assuming that the quasi-brittle to brittle transition is analogous to continuous phase 
transitions power law divergence of ∆  can be expected

( )µ µ∆ ∼ − γ− ,c� (10)
which defines the γ exponent of the transition. Since the exponent ξ of the burst size 
distribution is less than 2, both the first M1 and second M2 moments of burst sizes 
diverge in an infinite system. This has the consequence that the average burst size is 
proportional to the cuto size ∆ ∼∆c, which implies the relation /γ σ= 1  of the two 
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critical exponents. In order to numerically verify the analytical predictions, we plotted 
the average burst size ∆  as a function of the distance from the critical point µ µ−c , 
varying the value of µc until the best straight line is obtained on a double logarithmic 
plot. The procedure is illustrated in figure 3(b) for the system size N  =  107. A high qual-
ity power law of exponent 2 is obtained in the figure with the finite size critical point 

( ) ( )µ = =N 10 1.0009 2c
7  in an excellent agreement with the analytical considerations.

The value of the finite size critical point ( )µ Nc  is presented in figure 3(c) for system 
sizes N covering three orders of magnitude. It can be observed that ( )µ Nc  converges 
towards 1 with increasing N and obeys the scaling law

( ) ( ) /µ µ= ∞ + ν−N BN ,c c
1

� (11)

characteristic for continuous phase transitions. Here ( )µ ∞ = 1c  denotes the critical 
point of the infinite system, and ν is the correlation length exponent of the transition. 
It can be seen in figure 3(d) that the dierence ( ) ( )µ µ− ∞Nc c  decreases as a power law 
of N with an exponent 1/2, which implies ν = 2 for our model.

When studying the phase transition nature of fracture phenomena the order para
meter is typically defined in terms of the fraction of fibers which break up to the criti-
cal point of the loading process. However, for the quasi-brittle to brittle transition of 
highly disordered systems this fraction is always 1 and 0 in the quasi-brittle and brittle 
phases respectively, without any dependence on the distance from the critical point. 

Figure 3.  (a) Average size of bursts ∆  as a function of μ for system sizes covering 
three orders of magnitude. (b) The average burst size ∆  of N  =  107 is replotted as 
a function of the distance from the critical point cµ , where 1.0009cµ =  was used. 
The straight line represents a power law of exponent 2. (c) The critical point cµ  of 
finite size systems as a function of the number of fibers N. (d) The dierence of the 
finite size critical point and that of the infinite system Nc c( ) ( )µ µ− ∞  as a function 
of N. The straight line represents a power law of exponent 1/2.
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To characterize in which phase the system is when changing the control parameter μ, 
we define the order parameter of the transition ∆n  as the average ∆N  of the number 
of bursts ∆N  before global failure normalized by the total number of fibers N so that 

/=∆ ∆n N N . Since far below the critical point µ µ� c all avalanches are small (most 
of them have size 1) the control parameter has the value ≈∆n 1, while it tends to zero 
when approaching µc from below and it is zero in the brittle phase. For the continuous 
quasi-brittle to brittle transition power law functional form

( )µ µ∼ − β
∆n c� (12)

is expected for µ µ< c, which defines the order parameter exponent β of the transition. 
Figure 4 presents the scaling collapse of the order parameter obtained at dierent sys-
tem sizes assuming the scaling structure

( ) (( ( )) )/ /µ µ µ= Ψ − ∞β ν ν
∆

−n N N N, ,c
1

� (13)

where ( )Ψ x  denotes the scaling function. Best collapse is obtained with the critical 
exponents β = 1 and ν = 2.

6. Localized load sharing

In the case of equal load sharing studied so far, all fibers keep the same load. As the 
external load increases fibers gradually break but in spite of this the acceleration 
towards failure is completely missing. The qualitative explanation is that although the 
load bearing cross section of the bundle decreases and the load per fiber increases, the 
remaining fibers are always strong enough to ensure stability.

When the load sharing is localized (LLS) stress concentration develops around failed 
regions which in turn induces spatial correlation in the breaking process [13, 21, 22, 
25, 26]. It has been shown in FBMs that as a consequence, for moderate disorder the 
system becomes more brittle and fails earlier at lower loads than in ELS [13, 26–28].  

Figure 4.  Scaling collapse of the order parameter of the transition. Rescaling the 
two axes according to (12) a high quality data collapse is obtained. Inset: the order 
parameter n∆  as a function of the distance from the critical point cµ µ−  for the 
system of N  =  107 fibers. The straight line represents a power law of exponent 1.
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In order to see if this qualitative picture is valid when the disorder is high we carried 
out LLS simulations on a square lattice of size L  =  2001, equally redistributing the load 
of broken fibers on their intact nearest neighbors in the lattice.

Figure 5 shows that for strong disorder the size dependence of the macroscopic 
strength of the LLS bundle has the same functional form as in the ELS case, i.e. εc  
increases as a power law of N (figure 5(a)) and the μ dependence of εc  is also consistent 
with the analytic prediction of extreme order statistics (figures 5(b), (c)). The result 
shows that on the macro-level the spatial correlation introduced by the localized load 
sharing does not have any apparent consequence, even for the lowest disorder →µ 1 the 
macroscopic strength is controlled by the strongest fibers.

Figure 6 demonstrates that the burst size distributions ( )∆p  have the same trend 
when the exponent μ of the disorder distribution approaches 1 as for the ELS counter
part: power law distributions are obtained with a diverging cuto in the limit of →µ 1. 
It is interesting to note that the stress concentration around failed regions gives rise 
to a higher exponent ξ = ±1.8 0.05 of ( )∆p  which implies a somewhat lower frequency 
of large size bursts compared to the ELS. The high quality data collapse of the dis-
tributions of dierent μ values in figure 6(a) was obtained with the cuto exponent 

( )σ =∆ 0.3 3 .
In order to perform scaling analysis in terms of system size N simulations were 

carried out on square lattices of size L  =  101, 201, 501, 1001, 1501, 2001, 3151. The 
correlation length critical exponent ( )ν = 2.5 5  was determined by analyzing the system 
size dependence of the critical point ( )µ Nc , which is highlighted in figure 6(b). The finite 
size scaling of the order parameter was used to obtain the β exponent ( )β = 0.8 3  of the 
quasi-brittle to brittle transition (see figure 6(c)). The average burst size ∆  was also 
found to have the same diverging behavior as in ELS described by the critical exponent 

( )γ = 1.9 2  (not presented in figure).
The localized redistribution of load has the consequence that fibers breaking in a 

correlated avalanche form a connected cluster. In later stages of the failure process it 
may occur that intact fibers get isolated so that when they break the range of load 
redistribution is gradually extended until at least one intact fiber is found which then 

Figure 5.  (a) Critical deformation cε  of LLS bundles as a function of the system 
size N for several values of μ. Power law behavior is obtained. (b) The exponent 
α of the size dependence as a function of the control parameter μ. (c) The  
μ-dependence of α is described by a power law of exponent 1, similarly to the ELS 
case.
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gets the load. Intact fibers along the perimeter of clusters are highly stressed since they 
share the total load dropped by the fibers of the interior of the clusters. This damage 
structure has the consequence that for moderate disorder the clusters are space filling 
compact objects which remain small compared to the system size until failure. The 
final catastrophic avalanche is typically initiated by the breaking of a perimeter fiber. 
Figure 7 presents snapshots of the evolution of an LLS bundle of size L  =  2001 for 
µ = 0.9 where avalanches are highlighted by dierent colors. It can be observed that 
due to the high disorder the avalanches are not compact but they have a rather diuse 
interior. At the beginning of the breaking process spreading avalanches do not aect 
each other; however, as the number of broken fibers Nb increases avalanches merge and 
form large broken clusters (cracks in the model). Large avalanches already occur at 
early stages of the fracture process; due to their diuse structure in later stages small 
avalanches may nucleate even in the internal holes of the extended ones. The degree of 
damage in the bundle can be characterized by the fraction of broken fibers /=n N Nb b , 
which increases from 0 to 1 as the loading proceeds. It is interesting to note that even 
at high values of nb, where large clusters dominate the damage structure, the stability 
of the LLS system is retained, which is in strong contrast to the highly brittle behav-
iour of LLS bundles with moderate disorder [13, 26, 29].

In order to quantify the evolution of the cluster structure of broken fibers during 
the loading process, we determined the average value S  of the size S of clusters as a 

function of nb. S  is defined as the ratio of the second and first moments = ∑M Si i2
2, 

= ∑M Si i1  of cluster sizes, where the largest cluster is omitted in the summation. The 
value of /M M2 1 is averaged over 5000 simulations in bins of nb. The results are pre-
sented in figure 8 for four values of the μ exponent. It can be observed that for all μ 
the ( )S nb  curves have a sharp maximum, which indicates the emergence of a giant 
cluster at a critical damage fraction nb

c. Since the failure process is dominated by the 
disorder of fibers’ strength the cluster structure can be expected to be similar to the 
site percolation problem on a square lattice where nb is analogous to the site occupation 
probability [30]. This is confirmed by the fact that when μ decreases, i.e. the amount 
of disorder increases, the critical point nb

c gradually shifts to the site percolation criti-
cal point ≈n 0.5923b  on a square lattice, while for higher values →µ 1 the giant cluster 

Figure 6.  (a) Scaling collapse of the burst size distributions obtained at dierent μ 
values. (b) The critical point of finite systems Nc( )µ  was determined based on the 
average bursts size. Using the scaling ansatz (11) the correlation length exponent 
ν could be obtained. (c) The order parameter obeys the same scaling form (13), 
which yields the β exponent.
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emerges earlier. The reason is that for low μ exponents all avalanches are small so that 
in the limit of →µ 0 the disorder is so high that the fibers practically break one-by-one 
and the entire breaking process can be considered as a sequence of random nucleations, 

Figure 7.  Snapshots of the evolving breaking process on a square lattice of 
size L  =  2001 with 0.9µ =  using periodic boundary conditions. Avalanches are 
highlighted by randomly assigned colors. At early stages of the fracture process 
((a), (b)) bursts can evolve independently of each other; however, later on the 
merging of bursts dominates.

a)

c) d)

b)

Figure 8.  Average size of clusters S  as a function of the fraction of broken fibers 
nb. As μ decreases the position of the maximum nb

c tends to critical occupation 
probability pc of site percolation on a square lattice indicated by the vertical 
straight line.
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as it is in percolation. At higher μ the lower disorder gives more room for the stress 
concentration, which in turn gives rise to extended avalanches and a stronger spacial 
correlation of local breakings. Since large avalanches can already be triggered at the 
beginning of the fracture process (see also figure 7), large clusters can appear even at 
low damage fractions, which makes the ( )S nb  strongly asymmetric in figure 8 for high 
μ values.

A more detailed picture is provided by figure 9 which shows the size distribution 
of clusters p(S ) at several values of nb both below and above the corresponding criti-
cal point nb

c for two values of μ. Power law distributions are obtained, followed by an 
exponential cuto

( ) ( / )∼ −τ−p S S S Sexp ,c� (14)
where the cuto cluster size Sc is controlled by the value of nb. It can be observed that 
Sc tends to diverge as the critical damage fraction nb

c is approached from both sides. 
Careful scaling analysis revealed that below and above the critical point nb

c the exponent 
τ of the power law regime has dierent values. In figures 9((b), (c)) and ((e), ( f  )) we 
rescaled the avalanche size distributions with powers of the distance from the critical 

point | − |n nb b
c , tuning the scaling exponents along the horizontal and vertical axis until 

best collapse is achieved. The scaling functions can be well fitted with the exponents 
τ = 1.67 and τ = 2.1 (µ = 0.1), and τ = 1.77 and τ = 2.0 ( µ = 0.9), respectively below 
and above the corresponding nb

c (see figure 9). Clusters of broken fibers are generated by 
avalanches. At the beginning of the fracture process the merging of the clusters of indi-
vidual avalanches is practically negligible—hence, below the critical damage fraction nb

c 
the value of the exponent τ of the cluster size distribution p(S) should be close to the 
exponent ξ of the avalanche size distribution ( )∆p . Above nb

c the merging of avalanches 
dominates, which gives rise to a steeper cluster size distribution with a τ greater than 
ξ. The values of τ determined numerically slightly depend on the control parameter μ 
falling in the range τ = 1.65–1.95 below and τ = 1.95–2.1 above nb

c, which is consistent 
with the above arguments.

The good quality data collapse of p(S) also implies that the cuto cluster size Sc has 
a power law dependence on the distance from the critical point nb

c

/∼ | − | σ−S n n .b b
c

c
1 S� (15)

The value of the cuto exponent σS falls in the range 0.25–0.5, depending on the value 
of the control parameter μ.

7. Discussion

The presence of disorder makes the fracture process jerky where damage accumulates in 
intermittent avalanches that can be recorded in the form of crackling noise. Forecasting 
technologies of global failure of engineering construction or natural catastrophes like 
landslides, collapse of rockwalls, earthquakes, volcanic eruptions strongly rely on iden-
tifying signatures of the imminent failure based on the acceleration of crackling signals. 
In the present paper we showed in a fiber bundle model that this very important eect 
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of disorder is limited, i.e. when the disorder gets high fracture becomes unpredictable 
again. Heavy-tailed distributions of the failure thresholds of material elements give 
rise to a homogeneous fracture process which does not exhibit any sign of acceleration. 
Reducing the amount of disorder, the system undergoes a continuous phase transition 
to perfectly brittle failure, without restoring the ability of forecasting. In the mean field 
limit of the fiber bundle models (ELS) we determined analytically and numerically the 
critical exponents of the transition. On the macro-level the fracture strength of the  
bundle proved to increase with the system size—which is the direct consequence of  
the heavy-tailed distribution of fibers’ strength defined over an infinite support. For 
practical purposes the case of a large but finite upper cuto of local strength is also 
of high importance. Controlling the cuto value a crossover is expected between the 
decreasing size dependence typical for moderate disorder FBMs and the increasing one 
revealed by the present study. The crossover is accompanied by the changing degree of 
stationarity of the time series of breaking bursts, which addresses an interesting ques-
tion for failure forecast methods, as well.

In order to clarify how the inhomogeneous stress field developing around failed 
regions changes the evolution of the fracture process, we also studied the limit of local-
ized load sharing where the load of a broken fiber is equally redistributed over its intact 
nearest neighbors. Even in this case fat tailed distributions proved to ensure the domi-
nance of disorder over spatially correlated stress enhancements: the size distribution of 

Figure 9.  Size distribution of clusters p(S) at several damage fractions nb for 
0.1µ =  and 0.9µ =  in the upper and lower rows respectively. In (a) and (d ) 

distributions are presented covering the entire range of the damage fraction nb. 
Data collapse of the curves is presented separately below (b), (e), and above (c), 
( f  ) the corresponding critical point nb

c: n 0.598b
c =  for 0.1µ =  and n 0.548b

c =  for 
0.9µ = . The legend used in (a) and (d) is the same as in ((b), (c)) and ((e), ( f  )) 

respectively.
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avalanches has a power law functional form with an exponent close to the mean field 
value. This is in strong contrast to what is usually found in LLS FBMs, i.e. a very rap-
idly decreasing distribution of avalanche sizes is usually obtained, which is described 
either by a power law of exponent 9/2 or by an exponential. Additionally, the continu-
ous nature of the quasi-brittle to brittle transition remains in LLS, although the critical 
exponents have somewhat dierent values in the two limiting cases of load sharing. 
For LLS fiber bundles the spatial structure of damage strongly resembles the site per-
colation problem; deviations due to the presence of spatial correlations are obtained 
in the vicinity of the quasi-brittle to brittle phase transition. Although, for the lowest 
disorder →µ 1 the avalanche statistics and cluster structure of the LLS system shows 
the increasing role of spatial correlations, the macroscopic strength of the bundle is still 
consistent with the extreme order statistics obtained in ELS. The reason is that the 
time series of avalanches still exhibits a high degree of stationarity with the absence 
of a relevant acceleration and a catastrophic avalanche so that the strongest fibers can 
control macroscopic failure.

Based on our analytical and numerical results we conjecture that fat tailed strength 
distributions determine a unique universality class of the quasi-static fracture of fiber 
bundles. Recently, it has been demonstrated that 3D printing technology can be used 
to produce materials with finely tuned structural properties [31, 32]. In the near future 
it may also become possible to realize experimentally the limit of high disorder studied 
here.
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